Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4961-4979, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38180556

ABSTRACT

Sesamol (SM), a well-known component isolated from sesame seeds (Sesamum indicum), used in traditional medicines in treating numerous ailments. However, numerous molecular investigations revealed the various mechanisms behind its activity, emphasizing its antiproliferative, anti-inflammatory, and apoptosis-inducing properties, preventing cancer cell spread to distant organs. In several cells derived from various malignant tissues, SM-regulated signal transduction pathways and cellular targets have been identified. This review paper comprehensively describes the anticancer properties of SM and SM-viable anticancer drugs. Additionally, the interactions of this natural substance with standard anticancer drugs are examined, and the benefits of using nanotechnology in SM applications are explored. This makes SM a prime example of how ethnopharmacological knowledge can be applied to the development of contemporary drugs.


Subject(s)
Benzodioxoles , Phenols , Humans , Benzodioxoles/pharmacology , Phenols/pharmacology , Phenols/chemistry , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects
2.
J Hum Reprod Sci ; 15(3): 259-271, 2022.
Article in English | MEDLINE | ID: mdl-36341011

ABSTRACT

Background: Infertility is a world-wide problem and one third females. Over the years, anti-mullerian hormone (AMH) has emerged as a major marker of ovarian reserve. There is also increasing interest in determining the factors which can impact AMH levels. Aims: To correlate the association of reproductive and lifestyle factors on AMH levels in women of Indian origin. Settings and Design: Multicentric cross sectional study. Materials and Methods: The study was conducted using data extracted from the patient records of seven private fertility practices located in North India. Women who were attending these clinics for fertility treatment were requested to fill the questionnaire related to reproductive and lifestyle factors. Statistical Analysis used: Our outcome variable was level of AMH measured in the past 3 months, and was assessed as normal or low. All analyses were conducted using STATA 17. Results: We found a direct association of low AMH with increasing age, short cycles, amenorrhea and women with family history of premature menopause. We found a direct correlation of high AMH and women with polycystic ovary syndrome and those whose partners had Oligoasthenoteratozoospermia (OATS) or azoospermia. There was no correlation with smoking, sleep, diet, body mass index, cell phone or laptop use in our study. Conclusion: Reproductive and lifestyle factors may affect ovarian reserve and but there was a dearth of human studies in this area. To the best of our knowledge this is the first human study on the effect of AMH on Laptop and Cell phone use. We urgently need more studies to confirm or refute our findings so that we can counsel our patients well.

3.
Biogerontology ; 23(6): 809-824, 2022 12.
Article in English | MEDLINE | ID: mdl-35767131

ABSTRACT

Reduced bone mineral density, and muscle strength are the hallmark of aging-related motor coordination deficits and related neuropathologies. Since cerebellum regulates motor movements and balance perception of our body, therefore it may be an important target to control the age-related progression of motor dysfunctions. Dry stem powder of Tinospora cordifolia (TCP) was tested as a food supplement to elucidate its activity to attenuate age-associated locomotor dysfunctions. Intact acyclic middle-aged female rats were used in this study as the model system of the transition phase from premenopause to menopause in women along with cycling young adult rats. Normal chow or 30% High Fat Diet (HFD), supplemented with or without TCP was fed to animals for 12 weeks and then tested for locomotor performance on rotarod followed by post-sacrifice protein expression studies. In comparison to young adults, middle-aged animals showed an increase in number of falls and lesser time spent in rotarod performance test, whereas, animals given TCP supplemented feed showed improvement in performance with more pronounced effects observed in normal chow than HFD fed middle-aged rats. Further, due to its multicomponent nature TCP was found to target the expression of various markers of neuroinflammation, apoptosis, cell survival, and synaptic plasticity in the cerebellum region. The current findings suggest that TCP supplementation in the diet may prove to be a potential interventional strategy for the management of frailty and fall-associated morbidities caused by aging-related deterioration of bone mineral density, and muscle strength.


Subject(s)
Tinospora , Animals , Female , Rats , Cell Survival , Plant Extracts , Aging , Diet, High-Fat , Cerebellum
4.
Neurochem Res ; 47(6): 1692-1706, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35230647

ABSTRACT

Since sleep is a key homeostatic phenomenon of the body, therefore understanding the complex etiology of the neurological outcome of sleep deprivation (SD) such as anxiety, depression, cognitive dysfunctions, and their management is of utmost importance. The findings of the current study encompass the neurobehavioral as well as hormonal, and neuroinflammatory changes in serum and hypothalamus region of the brain as an outcome of acute SD and their amelioration by pre-treatment with butanol extract of Tinospora cordifolia. SD group animals showed anxiety-like behavior as evident from Elevated Plus Maze data and higher serum cortisol levels, whereas, pre-treatment with B-TCE showed anxiolytic activity and also reduced cortisol levels which was corroborated by an increase in leptin and insulin levels. Further, SD induced elevation of serum pro-inflammatory cytokines IL-6, TNF-α, IL-1ß, and MCP-1 and subsequent activation of astroglial cells in the hypothalamus was suppressed in B-TCE pre-treated animals. The current findings suggest that besides the cortical structures, hypothalamus region's synaptic plasticity and cell survival are adversely impacted by acute SD. Further active ingredients present in B-TCE may be useful for the management of SD-induced anxiety, systemic inflammation, and neuroinflammation by targeting hypothalamic BDNF-TrkB/PI3K-Akt pathways.


Subject(s)
Tinospora , Animals , Anxiety , Butanols , Cell Survival , Hydrocortisone , Hypothalamus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Tinospora/chemistry , Tinospora/metabolism
5.
Neuromolecular Med ; 24(2): 202-214, 2022 06.
Article in English | MEDLINE | ID: mdl-34410631

ABSTRACT

Sleep deprivation due to present-day lifestyle and late-hours work commitments are associated with a broad spectrum of neurobehavioral complications. Moreover, women, as they age, become prone to the cumulative effects of menopause such as sleep disturbances, adiposity, and inflammation which are attributed to a compromised immuno-neuro-endocrine axis. So far, no effective therapeutic remedy is available to mitigate the adverse effects of SD. The current study was aimed to elucidate the neuroprotective potential of n-Butanol fraction obtained from hydroalcoholic extract of Tinospora cordifolia stem (B-TCE). Four groups of female rats are (1) Vehicle-undisturbed sleep, (2) Vehicle-sleep deprived (between 6 a.m. and 6 p.m.), (3) B-TCE oral feeding for 2 weeks and sleep deprivation, and (4) B-TCE alone undisturbed sleep group. Novel Object Recognition test was used to study cognitive impairments and Rotarod for motor coordination. Rats were then sacrificed to study the expression of various marker proteins in the hippocampus and piriform cortex regions of the brain by western blotting. SD was observed to impair the exploratory behavior and neuromuscular coordination, whereas, B-TCE pre-treatment was observed to ameliorate these behavioral functions'- impairments and further suppressed the changes in the expression of markers for synaptic plasticity, inflammation, cell survival, and apoptosis pathways. The current data suggest that B-TCE may be effective in the management of acute SD-associated impairments in learning and memory functions and neuromuscular coordination.


Subject(s)
Tinospora , 1-Butanol/pharmacology , 1-Butanol/therapeutic use , Animals , Butanols/pharmacology , Butanols/therapeutic use , Cognition , Female , Hippocampus , Humans , Inflammation/complications , Inflammation/drug therapy , Middle Aged , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Sleep Deprivation/complications , Sleep Deprivation/drug therapy , Sleep Deprivation/metabolism
6.
Neurochem Int ; 143: 104937, 2021 02.
Article in English | MEDLINE | ID: mdl-33309979

ABSTRACT

Obesity is a rapidly growing health problem worldwide and its prevalence has increased markedly in both the developing and developed nations. It is associated with a range of co-morbidities such as cardiovascular disease, type 2 diabetes mellitus, and cognitive dysfunctions. Therefore, the need for a safe and effective treatment has led to the exploration of natural products for the management of obesity. In the present study, we tested the anxiolytic, anti-apoptotic, and anti-neuroinflammatory potential of Tinospora cordifolia in a high fat diet-induced obesity rat model system. Young female Wistar albino rats were divided into three groups: (1) Low fat diet (LFD), fed on normal chow feed; (2) High fat diet (HFD), fed on diet containing 30% fat by weight; and (3) High fat diet containing extract (HFDE), fed on high fat diet supplemented with the stem powder of T. cordifolia (TCP). The rats from each group were kept on their respective feeding regimen for 12 weeks. The body weight and calorie intake were recorded weekly. The elevated plus maze test and rotarod performance test were performed to evaluate the anxiety-like behavior and locomotor coordination, respectively. The levels of serum cytokines (IL-6 and TNF-α) were estimated and various markers for inflammation, synaptic plasticity, apoptosis, and energy homeostasis were studied by western blotting. The HFDE rats showed reduced anxiety-like behavior and improved locomotor behavior as compared to HFD-induced obese rats. The TCP supplementation in high fat diet suppressed the expression of inflammatory molecules, including serum cytokines (IL-6 and TNF-α), and modulated apoptosis and synaptic plasticity. TCP was found to be effective in managing body weight in HFD-fed rats by maintaining energy metabolism and cellular homeostasis. T. cordifolia may be recommended as a potential therapeutic agent to prevent the adverse effects of obesity and obesity-associated brain dysfunctions.


Subject(s)
Anxiety/drug therapy , Brain/drug effects , Diet, High-Fat/adverse effects , Obesity/drug therapy , Plant Extracts/therapeutic use , Tinospora , Animals , Anxiety/metabolism , Anxiety/psychology , Brain/metabolism , Female , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Locomotion/drug effects , Locomotion/physiology , Obesity/metabolism , Obesity/psychology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Stems , Rats , Rats, Wistar
7.
Neurochem Int ; 141: 104891, 2020 12.
Article in English | MEDLINE | ID: mdl-33137454

ABSTRACT

In Ayurveda, the age-old Indian traditional system of medicine, health is considered to be achieved as equilibrium of physical and mental wellbeing and brain related ailments are recognized as 'Vatavyadi'. Rasayana herbs were mainly used for pharmacological treatment of neurological diseases and Tinospora cordifolia is one of the popular Rasayana herbs of Ayurveda. The traditional claims of therapeutic activity of this herb for treatment of fever, diabetes, anxiety, immunodeficiency, memory deficit and psychological problems have been explored by different research groups using reverse pharmacology and advance technological approaches. The aim of current review is to compile and discuss the neurotherapeutic potential of T. cordifolia in the light of various preclinical and clinical studies from literature. This review summarizes the information about different extracts of this herb and decoctions used for various neuro-related problems such as neurodegenerative diseases, neuroinflammation, sleep disorders, neural cancers, memory and cognition deficits and psychological problems besides other potential activities. The review also provides the knowledge of underlying therapeutic mechanism of T. cordifolia and its active phytoconstituents.


Subject(s)
Medicine, Ayurvedic , Nervous System Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Plant Preparations/pharmacology , Plant Preparations/therapeutic use , Tinospora/chemistry , Animals , Humans , India , Medicine, Traditional , Neurodegenerative Diseases/drug therapy
8.
Neuromolecular Med ; 22(1): 81-99, 2020 03.
Article in English | MEDLINE | ID: mdl-31606849

ABSTRACT

Overstimulation of glutamate receptors leads to development of excitotoxicity, which is implicated as final destructive pathway in neurodegenerative diseases. Development of alternative therapeutic strategies effective against glutamate-induced excitotoxicity is much in demand. Herbal drug development is emerging as a major research area for the treatment of various debilitating diseases due to multimodal action and least side effects of herbal products. The current study was aimed to investigate neuroprotective potential of butanol extract of Tinospora cordifolia (B-TCE) against glutamate-induced excitotoxicity using primary hippocampal neurons as in vitro and Wistar strain albino rats as in vivo model systems. Molecular and behavioral parameters were studied to elucidate the underlying mechanism of beneficial effects of B-TCE. B-TCE treatment was also effective in prevention of anxiety, cognition, and motor-coordination deficits induced by glutamate. B-TCE pre-treatment protected the hippocampal neurons from glutamate-induced neurodegeneration and impaired plasticity. At molecular level, B-TCE was observed to attenuate overactivation of glutamate receptors. B-TCE promoted upregulation of ERK and AKT pathways of synaptic plasticity and cell survival in the hippocampus region of brain. This study provides first evidence of neuroprotective potential of B-TCE against glutamate-induced excitotoxicity in hippocampus region and suggests that B-TCE may act as a potential candidate for neuroprotective therapeutic approaches. A single compound 'tinosporicide' was further isolated from B-TCE, which was found to be effective at 800× lower concentration against glutamate-induced neurodegeneration under in vitro conditions.


Subject(s)
Cognition Disorders/drug therapy , Glutamic Acid/toxicity , Hippocampus/cytology , Neurons/drug effects , Neuroprotective Agents/therapeutic use , Neurotoxins/toxicity , Phytotherapy , Plant Extracts/therapeutic use , Tinospora/chemistry , Animals , Butanols , Cells, Cultured , Cerebellum/cytology , Cognition Disorders/chemically induced , Cytokines/blood , Elevated Plus Maze Test , Exploratory Behavior/drug effects , Female , Gliosis/chemically induced , Gliosis/drug therapy , Neuroprotective Agents/isolation & purification , Plant Extracts/isolation & purification , RNA, Messenger/biosynthesis , Random Allocation , Rats, Wistar , Receptors, Glutamate/biosynthesis , Receptors, Glutamate/genetics , Rotarod Performance Test , Signal Transduction/drug effects , Single-Blind Method , Solvents
9.
Chemistry ; 23(41): 9872-9878, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28474839

ABSTRACT

A fluorescein-based fluorescent probe has been designed and synthesised that selectively detects H2 S in aqueous medium, among various analytes tested. This fluorescein-based fluorescent probe has also been successfully utilised for real-time imaging of exo- and endogenously produced H2 S in cancer cells and normal cells. Moreover, the probe can also detect H2 S in the rat brain hippocampus at variable depths and in living nematodes.

10.
Adv Neural Inf Process Syst ; 30: 239-249, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29391769

ABSTRACT

Obtaining enough labeled data to robustly train complex discriminative models is a major bottleneck in the machine learning pipeline. A popular solution is combining multiple sources of weak supervision using generative models. The structure of these models affects training label quality, but is difficult to learn without any ground truth labels. We instead rely on these weak supervision sources having some structure by virtue of being encoded programmatically. We present Coral, a paradigm that infers generative model structure by statically analyzing the code for these heuristics, thus reducing the data required to learn structure significantly. We prove that Coral's sample complexity scales quasilinearly with the number of heuristics and number of relations found, improving over the standard sample complexity, which is exponential in n for identifying nth degree relations. Experimentally, Coral matches or outperforms traditional structure learning approaches by up to 3.81 F1 points. Using Coral to model dependencies instead of assuming independence results in better performance than a fully supervised model by 3.07 accuracy points when heuristics are used to label radiology data without ground truth labels.

SELECTION OF CITATIONS
SEARCH DETAIL
...