Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 40(13): 111429, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170810

ABSTRACT

Lung cancer is a highly aggressive and metastatic disease responsible for approximately 25% of all cancer-related deaths in the United States. Using high-throughput in vitro and in vivo screens, we have previously established Impad1 as a driver of lung cancer invasion and metastasis. Here we elucidate that Impad1 is a direct target of the epithelial microRNAs (miRNAs) miR-200 and miR∼96 and is de-repressed during epithelial-to-mesenchymal transition (EMT); thus, we establish a mode of regulation of the protein. Impad1 modulates Golgi apparatus morphology and vesicular trafficking through its interaction with a trafficking protein, Syt11. These changes in Golgi apparatus dynamics alter the extracellular matrix and the tumor microenvironment (TME) to promote invasion and metastasis. Inhibiting Impad1 or Syt11 disrupts the cancer cell secretome, regulates the TME, and reverses the invasive or metastatic phenotype. This work identifies Impad1 as a regulator of EMT and secretome-mediated changes during lung cancer progression.


Subject(s)
Lung Neoplasms , MicroRNAs , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , MicroRNAs/metabolism , Neoplasm Invasiveness/genetics , Neoplasm Metastasis , Synaptotagmins/metabolism , Tumor Microenvironment
2.
Genes Dev ; 36(9-10): 582-600, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35654454

ABSTRACT

One of the mechanisms by which cancer cells acquire hyperinvasive and migratory properties with progressive loss of epithelial markers is the epithelial-to-mesenchymal transition (EMT). We have previously reported that in different cancer types, including nonsmall cell lung cancer (NSCLC), the microRNA-183/96/182 cluster (m96cl) is highly repressed in cells that have undergone EMT. In the present study, we used a novel conditional m96cl mouse to establish that loss of m96cl accelerated the growth of Kras mutant autochthonous lung adenocarcinomas. In contrast, ectopic expression of the m96cl in NSCLC cells results in a robust suppression of migration and invasion in vitro, and tumor growth and metastasis in vivo. Detailed immune profiling of the tumors revealed a significant enrichment of activated CD8+ cytotoxic T lymphocytes (CD8+ CTLs) in m96cl-expressing tumors, and m96cl-mediated suppression of tumor growth and metastasis was CD8+ CTL-dependent. Using coculture assays with naïve immune cells, we show that m96cl expression drives paracrine stimulation of CD8+ CTL proliferation and function. Using tumor microenvironment-associated gene expression profiling, we identified that m96cl elevates the interleukin-2 (IL2) signaling pathway and results in increased IL2-mediated paracrine stimulation of CD8+ CTLs. Furthermore, we identified that the m96cl modulates the expression of IL2 in cancer cells by regulating the expression of transcriptional repressors Foxf2 and Zeb1, and thereby alters the levels of secreted IL2 in the tumor microenvironment. Last, we show that in vivo depletion of IL2 abrogates m96cl-mediated activation of CD8+ CTLs and results in loss of metastatic suppression. Therefore, we have identified a novel mechanistic role of the m96cl in the suppression of lung cancer growth and metastasis by inducing an IL2-mediated systemic CD8+ CTL immune response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Animals , CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Interleukin-2/genetics , Interleukin-2/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , T-Lymphocytes, Cytotoxic , Tumor Microenvironment
3.
Cells ; 11(9)2022 04 28.
Article in English | MEDLINE | ID: mdl-35563790

ABSTRACT

The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.


Subject(s)
Golgi Apparatus , Neoplasms , Golgi Apparatus/metabolism , Humans , Neoplasms/metabolism , Protein Transport , Tumor Microenvironment
4.
Oncogene ; 39(43): 6719-6732, 2020 10.
Article in English | MEDLINE | ID: mdl-32963352

ABSTRACT

Metastasis is the cause for 90% of cancer-related mortalities. Identification of genetic drivers promoting dissemination of tumor cells may provide opportunities for novel therapeutic strategies. We previously reported an in vivo gain-of-function screen that identified ~30 genes with a functional role in metastasis promotion and characterized detailed mechanistic functions of two hits. In this study, we characterized the contribution of one of the identified genes, MBIP (MAP3K12 binding inhibitory protein), towards driving tumor invasion and metastasis. We demonstrate that expression of MBIP significantly enhances the cellular proliferation, migration and invasion of NSCLC cells in vitro and metastasis in vivo. We functionally characterized that MBIP mediates activation of the JNK pathway and induces expression of matrix metalloproteinases (MMPs), which are necessary for the invasive and metastatic phenotype. Our findings establish a novel mechanistic role of MBIP as a driver of NSCLC progression and metastasis.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms/pathology , Matrix Metalloproteinases/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/secondary , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Models, Animal , Disease Progression , Female , Gain of Function Mutation , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lung Neoplasms/genetics , Male , Mice , Neoplasm Invasiveness/genetics , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Xenograft Model Antitumor Assays
5.
Oncogene ; 39(37): 5979-5994, 2020 09.
Article in English | MEDLINE | ID: mdl-32753652

ABSTRACT

Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide, due in part to its proclivity to metastasize. Identifying novel drivers of invasion and metastasis holds therapeutic potential for the disease. We conducted a gain-of-function invasion screen, which identified two separate hits, IMPAD1 and KDELR2, as robust, independent drivers of lung cancer invasion and metastasis. Given that IMPAD1 and KDELR2 are known to be localized to the ER-Golgi pathway, we studied their common mechanism of driving in vitro invasion and in vivo metastasis and demonstrated that they enhance Golgi-mediated function and secretion. Therapeutically inhibiting matrix metalloproteases (MMPs) suppressed both IMPAD1- and KDELR2-mediated invasion. The hits from this unbiased screen and the mechanistic validation highlight Golgi function as one of the key cellular features altered during invasion and metastasis.


Subject(s)
Golgi Apparatus/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Phosphoric Monoester Hydrolases/genetics , Vesicular Transport Proteins/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , Matrix Metalloproteinases/metabolism , Neoplasm Invasiveness , Phosphoric Monoester Hydrolases/metabolism , Vesicular Transport Proteins/metabolism
6.
Nat Commun ; 10(1): 5125, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719531

ABSTRACT

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, due in part to the propensity of lung cancer to metastasize. Aberrant epithelial-to-mesenchymal transition (EMT) is a proposed model for the initiation of metastasis. During EMT cell-cell adhesion is reduced allowing cells to dissociate and invade. Of the EMT-associated transcription factors, ZEB1 uniquely promotes NSCLC disease progression. Here we apply two independent screens, BioID and an Epigenome shRNA dropout screen, to define ZEB1 interactors that are critical to metastatic NSCLC. We identify the NuRD complex as a ZEB1 co-repressor and the Rab22 GTPase-activating protein TBC1D2b as a ZEB1/NuRD complex target. We find that TBC1D2b suppresses E-cadherin internalization, thus hindering cancer cell invasion and metastasis.


Subject(s)
Cadherins/metabolism , Endocytosis , GTPase-Activating Proteins/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Co-Repressor Proteins/metabolism , Humans , Mice , Models, Biological , Neoplasm Metastasis , Protein Binding , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...