Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
2.
J Cell Biochem ; 122(12): 1903-1914, 2021 12.
Article in English | MEDLINE | ID: mdl-34553411

ABSTRACT

Cardiac glycosides, such as digoxin and digitoxin, are compounds that interact with Na+ /K+ -ATPase to induce anti-neoplastic effects; however, these cardiac glycosides have narrow therapeutic index. Thus, semi-synthetic analogs of digitoxin with modifications in the sugar moiety has been shown to be an interesting approach to obtain more selective and more effective analogs than the parent natural product. Therefore, the aim of this study was to assess the cytotoxic potential of novel digitoxigenin derivatives, digitoxigenin-α-L-rhamno-pyranoside (1) and digitoxigenin-α-L-amiceto-pyranoside (2), in cervical carcinoma cells (HeLa) and human diploid lung fibroblasts (Wi-26-VA4). In addition, we studied the anticancer mechanisms of action of these compounds by comparing its cytotoxic effects with the potential to modulate the activity of three P-type ATPases; Na+ /K+ -ATPase, sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA), and plasma membrane Ca2+ -ATPase (PMCA). Briefly, the results showed that compounds 1 and 2 were more cytotoxic and selectivity for HeLa tumor cells than the nontumor cells Wi-26-VA4. While the anticancer cytotoxicity in HeLa cells involves the modulation of Na+ /K+ -ATPase, PMCA and SERCA, the modulation of these P-type ATPases was completely absent in Wi-26-VA4 cells, which suggest the importance of their role in the cytotoxic effect of compounds 1 and 2 in HeLa cells. Furthermore, the compound 2 inhibited directly erythrocyte ghosts PMCA and both compounds were more cytotoxic than digitoxin in HeLa cells. These results provide a better understanding of the mode of action of the synthetic cardiac glycosides and highlights 1 and 2 as potential anticancer agents.


Subject(s)
Cell Membrane/enzymology , Digitoxigenin , Plasma Membrane Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Cell Membrane/genetics , Digitoxigenin/analogs & derivatives , Digitoxigenin/pharmacology , HeLa Cells , Humans , Plasma Membrane Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sodium-Potassium-Exchanging ATPase/genetics
3.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924395

ABSTRACT

Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure-Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA-MLR (Genetic Algorithm-Multilinear Regression) model with acceptable statistical performance (R2 = 0.898, Q2loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp2-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole-indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.

4.
Tetrahedron ; 74(41): 6003-6011, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30983640

ABSTRACT

Glycosyl phosphates are known as versatile donors for the synthesis of complex oligosaccharides both chemically and enzymatically. Herein, we report the stereoselective construction of modular building blocks for the synthesis of N-glycan using glycosyl phosphates as donors. We have synthesized four trisaccharide building blocks with orthogonal protecting groups, namely, Manß2GlcNAc(OAc)3ß6GlcNAc (9), Manß2GlcNAc-ß6GlcNAc(OAc)3 (15), Manß2GlcNAc(OAc)3ß4GlcNAc (18) and Manß2GlcNAcß4GlcNAc(OAc) (22) for further selective elongation using glycosyltransferases. The glycosylation reaction using glycosyl phosphate was found to be high yielding with shorter reaction time. Initially, The phthalimide protected glucosamine donor was exploited to ensure the formation of ß-glycosidic linkage and later converted to the N-acetyl group before the enzymatic synthesis. The selective deprotection of O-benzyl group was performed prior to enzymatic synthesis to avoid its negative interference.

5.
ACS Med Chem Lett ; 5(4): 395-9, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24900847

ABSTRACT

Cardiac glycosides are potent inhibitors of cancer cell growth and possess antiviral activities at nanomolar concentrations. In this study we evaluated the anticytomegalovirus (CMV) activity of digitoxin and several of its analogues. We show that sugar type and sugar length attached to the steroid core structure affects its anticytomegalovirus activity. Structure-activity relationship (SAR) studies identified the l-sugar containing cardiac glycosides as having improved anti-CMV activity and may lead to better understanding of how these compounds inhibit CMV replication.

6.
Medchemcomm ; 5(8): 1138-1142, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25729554

ABSTRACT

Ten members of the mezzettiaside family of natural products were synthesized and evaluated for anticancer and antibacterial activity. Complete anticancer (H460) and antibacterial (B. subtilis) activities for the ten natural products and four new analogues were found. Comparison to the cleistrioside and cleistetroside classes of natural products were made.

7.
Chem Sci ; 5(6): 2230-2234, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25729559

ABSTRACT

The first synthesis of any and all members of the mezzettiaside family of natural products has been achieved. The reported synthesis features the iterative use of the Taylor catalyst in a dual nucleophilic boron/electrophilic palladium catalyzed regioselective glycosylation. In addition, the de novo approach utilizes atomless protecting groups and the minimal use of protecting groups (2 chloroacetates for the synthesis of 10 natural products). These divergent syntheses occurred in a range of 13 to 22 longest linear steps and required only 41 total steps to prepare the entire family of mezzettiasides.

SELECTION OF CITATIONS
SEARCH DETAIL
...