Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Comput Sci ; 4(3): 200-209, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38459272

ABSTRACT

Here we present a machine learning model trained on electron density for the production of host-guest binders. These are read out as simplified molecular-input line-entry system (SMILES) format with >98% accuracy, enabling a complete characterization of the molecules in two dimensions. Our model generates three-dimensional representations of the electron density and electrostatic potentials of host-guest systems using a variational autoencoder, and then utilizes these representations to optimize the generation of guests via gradient descent. Finally the guests are converted to SMILES using a transformer. The successful practical application of our model to established molecular host systems, cucurbit[n]uril and metal-organic cages, resulted in the discovery of 9 previously validated guests for CB[6] and 7 unreported guests (with association constant Ka ranging from 13.5 M-1 to 5,470 M-1) and the discovery of 4 unreported guests for [Pd214]4+ (with Ka ranging from 44 M-1 to 529 M-1).

2.
Angew Chem Int Ed Engl ; 58(14): 4520-4525, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30397988

ABSTRACT

Akin to electronic systems that can tune to and process signals of select frequencies, systems/networks of chemical reactions also "propagate" time-varying concentration inputs in a frequency-dependent manner. Whereas signals of low frequencies are transmitted, higher frequency inputs are dampened and converted into steady-concentration outputs. Such behavior is observed in both idealized reaction chains as well as realistic signaling cascades, in the latter case explaining the experimentally observed responses of such cascades to input calcium oscillations. These and other results are supported by numerical simulations within the freely available Kinetix web application we developed to study chemical systems of arbitrary architectures, reaction kinetics, and boundary conditions.

3.
Angew Chem Int Ed Engl ; 57(9): 2367-2371, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29405528

ABSTRACT

Analysis of the chemical-organic knowledge represented as a giant network reveals that it contains millions of reaction sequences closing into cycles. Without realizing it, independent chemists working at different times have jointly created examples of cyclic sequences that allow for the recovery of useful reagents and for the autoamplification of synthetically important molecules, those that mimic biological cycles, and those that can be operated one-pot.

SELECTION OF CITATIONS
SEARCH DETAIL
...