Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Am J Clin Nutr ; 117(3): 477-489, 2023 03.
Article in English | MEDLINE | ID: mdl-36811474

ABSTRACT

BACKGROUND: Dietary intake of pulses is associated with beneficial effects on body weight management and cardiometabolic health, but some of these effects are now known to depend on integrity of plant cells, which are usually disrupted by flour milling. Novel cellular flours preserve the intrinsic dietary fiber structure of whole pulses and provide a way to enrich preprocessed foods with encapsulated macronutrients. OBJECTIVES: This study aimed to determine the effects of replacing wheat flour with cellular chickpea flour on postprandial gut hormones, glucose, insulin, and satiety responses to white bread. METHODS: We conducted a double-blind randomized crossover study in which postprandial blood samples and scores were collected from healthy human participants (n = 20) after they consumed bread enriched with 0%, 30%, or 60% (wt/wt) cellular chickpea powder (CCP, 50 g total starch per serving). RESULTS: Bread type significantly affected postprandial glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) responses (time × treatment, P = 0.001 for both). The 60% CCP breads elicited significantly elevated and sustained release of these anorexigenic hormones [between 0% and 60% CPP-GLP-1: mean difference incremental area under the curve (iAUC), 3101 pM/min; 95% CI: 1891, 4310; P-adjusted < 0.001; PYY: mean difference iAUC, 3576 pM/min; 95% CI: 1024, 6128; P-adjusted = 0.006] and tended to increase fullness (time × treatment, P = 0.053). Moreover, bread type significantly influenced glycemia and insulinemia (time × treatment, P < 0.001, P = 0.006, and P = 0.001 for glucose, insulin, and C-peptide, respectively), with 30% CCP breads eliciting a >40% lower glucose iAUC (P-adjusted < 0.001) than the 0% CCP bread. Our in vitro studies revealed slow digestion of intact chickpea cells and provide a mechanistic explanation for the physiologic effects. CONCLUSIONS: The novel use of intact chickpea cells to replace refined flours in a white bread stimulates an anorexigenic gut hormone response and has potential to improve dietary strategies for prevention and treatment of cardiometabolic diseases. This study was registered at clinicaltrials.gov as NCT03994276.


Subject(s)
Cardiovascular Diseases , Cicer , Gastrointestinal Hormones , Humans , Bread , Flour , Cross-Over Studies , Blood Glucose , Triticum/chemistry , Glucose , Glucagon-Like Peptide 1 , Insulin , Peptide YY , Postprandial Period
2.
Food Chem ; 404(Pt A): 134538, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36257266

ABSTRACT

The cell structure and low glycaemic benefits of pulses are compromised by conventional flour-milling. Cellular chickpea powders ('CCPs') are a new alternative to pulse flours. Here we investigated the in vitro bioaccessibility of essential amino acids ('EAAs') from CCP-enriched bread products and determined the effect of their consumption on serum amino acid responses in healthy humans (n = 20, randomised cross-over design). Breads were prepared with 0, 30 and 60 % of the wheat flour replaced by CCP (intact cells containing encapsulated protein). We found that significant proportion of EAAs from encapsulated protein became bioaccessible during in vitro duodenal digestion, and that in vivo serum EAA responses from healthy human participants were significantly higher following consumption of CCP-enriched breads. Furthermore, the EAA profile of in vitro digestion products were well-correlated with in vivo peak serum EAAs responses. We conclude that CCP-enrichment of wheat bread improved the amount and diversity of bioavailable EAAs.


Subject(s)
Bread , Flour , Humans , Amino Acids , Digestion , Plant Cells , Triticum/chemistry , Cross-Over Studies
3.
Trends Food Sci Technol ; 120: 254-264, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35210697

ABSTRACT

BACKGROUND: Starch is a principal dietary source of digestible carbohydrate and energy. Glycaemic and insulinaemic responses to foods containing starch vary considerably and glucose responses to starchy foods are often described by the glycaemic index (GI) and/or glycaemic load (GL). Low GI/GL foods are beneficial in the management of cardiometabolic disorders (e.g., type 2 diabetes, cardiovascular disease). Differences in rates and extents of digestion of starch-containing foods will affect postprandial glycaemia. SCOPE AND APPROACH: Amylolysis kinetics are influenced by structural properties of the food matrix and of starch itself. Native (raw) semi-crystalline starch is digested slowly but hydrothermal processing (cooking) gelatinises the starch and greatly increases its digestibility. In plants, starch granules are contained within cells and intact cell walls can limit accessibility of water and digestive enzymes hindering gelatinisation and digestibility. In vitro studies of starch digestion by α-amylase model early stages in digestion and can suggest likely rates of digestion in vivo and expected glycaemic responses. Reports that metabolic responses to dietary starch are influenced by α-amylase gene copy number, heightens interest in amylolysis. KEY FINDINGS AND CONCLUSIONS: This review shows how enzyme kinetic strategies can provide explanations for differences in digestion rate of different starchy foods. Michaelis-Menten and Log of Slope analyses provide kinetic parameters (e.g., K m and k cat /K m ) for evaluating catalytic efficiency and ease of digestibility of starch by α-amylase. Suitable kinetic methods maximise the information that can be obtained from in vitro work for predictions of starch digestion and glycaemic responses in vivo.

4.
Food Hydrocoll ; 114: 106565, 2021 May.
Article in English | MEDLINE | ID: mdl-33941996

ABSTRACT

The global rise in obesity and type 2 diabetes has generated significant interest in regulating the glycaemic impact of staple foods. Wheat breads (white or wholemeal) are popular staples, but have a high-glycaemic index, due to the highly digestible wheat starch. Reducing the glycaemic potency of white bread is challenging because the bread-making conditions are mostly conducive to starch gelatinisation. Cellular legume powders are a new source of type 1 resistant starch, where the starch is encapsulated by dietary fibre in the form of intact plant cell walls. The starch in these cell powders is less susceptible to gelatinisation and digestion than starch in conventional legume flours. However, legume cell resilience to baking conditions and the effects of this ingredient on glycaemic responses and product quality are unknown. Here we show that the integrity of cell wall fibre in chickpea powder was preserved on baking and this led to a ~40% reduction in in vivo glycaemic responses (iAUC120) to white bread rolls (~50 g available carbohydrate and 12 g wheat protein per serving) when 30% or 60% (w/w) of the wheat flour was replaced with intact cell powder. Significant reductions in glycaemic responses were achieved without adverse effects on bread texture, appearance or palatability. Starch digestibility analysis and microscopy confirmed the importance of cell integrity in attenuating glycaemic responses. Alternative processing methods that preserve cell integrity are a new, promising way to provide healthier low glycaemic staple foods; we anticipate that this will improve dietary options for diabetes care.

5.
Nat Rev Gastroenterol Hepatol ; 18(2): 101-116, 2021 02.
Article in English | MEDLINE | ID: mdl-33208922

ABSTRACT

Epidemiological studies have consistently demonstrated the benefits of dietary fibre on gastrointestinal health through consumption of unrefined whole foods, such as wholegrains, legumes, vegetables and fruits. Mechanistic studies and clinical trials on isolated and extracted fibres have demonstrated promising regulatory effects on the gut (for example, digestion and absorption, transit time, stool formation) and microbial effects (changes in gut microbiota composition and fermentation metabolites) that have important implications for gastrointestinal disorders. In this Review, we detail the major physicochemical properties and functional characteristics of dietary fibres, the importance of dietary fibres and current evidence for their use in the management of gastrointestinal disorders. It is now well-established that the physicochemical properties of different dietary fibres (such as solubility, viscosity and fermentability) vary greatly depending on their origin and processing and are important determinants of their functional characteristics and clinical utility. Although progress in understanding these relationships has uncovered potential therapeutic opportunities for dietary fibres, many clinical questions remain unanswered such as clarity on the optimal dose, type and source of fibre required in both the management of clinical symptoms and the prevention of gastrointestinal disorders. The use of novel fibres and/or the co-administration of fibres is an additional therapeutic approach yet to be extensively investigated.


Subject(s)
Dietary Fiber/metabolism , Gastrointestinal Microbiome , Gastrointestinal Transit , Intestinal Mucosa/metabolism , Micronutrients/metabolism , Biological Availability , Constipation/diet therapy , Diarrhea/diet therapy , Dietary Fiber/therapeutic use , Diverticular Diseases/diet therapy , Fermentation , Humans , Inflammatory Bowel Diseases/diet therapy , Irritable Bowel Syndrome/diet therapy , Prebiotics , Solubility , Viscosity
6.
Sci Rep ; 10(1): 20290, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219331

ABSTRACT

The gastrointestinal mucus layer represents the last barrier between ingested food or orally administered pharmaceuticals and the mucosal epithelium. This complex gel structure plays an important role in the process of small intestinal absorption. It provides protection against hazardous particles such as bacteria but allows the passage of nutrients and drug molecules towards the intestinal epithelium. In scientific research, mucus from animal sources is usually used to simulate difficult-to-obtain human small intestinal mucus for investigating the intramucus transport of drug delivery systems or food nanoparticles. However, there is a lack of evidence the human mucus can be reliably substituted by animal counterparts for human-relevant transport models. In this report, a procedure for collecting human mucus has been described. More importantly, the permeability characteristics of human and porcine small intestinal mucus secretions to sub-micron sized particles have been compared under simulated intestinal conditions. Negatively charged, 500 nm latex beads were used in multiple-particle tracking experiments to examine the heterogeneity and penetrability of mucus from different sources. Diffusion of the probe particles in adult human ileal mucus and adult pig jejunal and ileal mucus revealed no significant differences in microstructural organisation or microviscosity between the three mucus types (P > 0.05). In contrast to this interspecies similarity, the intraspecies comparison of particle diffusivity in the mucus obtained from adult pigs vs. 2-week old piglets showed better penetrability of the piglet mucus. The mean Stokes-Einstein viscosity of the piglet jejunal mucus was approx. two times lower than the viscosity of the pig jejunal mucus (P < 0.05). All mucus structures were also visualised by scanning electron microscopy. This work validates the use of porcine small intestinal mucus collected from fully-grown pigs for studying colloidal transport of sub-micron sized particles in mucus under conditions mimicking the adult human small intestinal environment.


Subject(s)
Colloids/pharmacokinetics , Drug Carriers/pharmacokinetics , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Adult , Age Factors , Aged , Animals , Animals, Suckling , Colloids/chemistry , Diffusion , Drug Carriers/chemistry , Female , Humans , Intestinal Mucosa/chemistry , Intestinal Mucosa/ultrastructure , Intestine, Small/chemistry , Intestine, Small/ultrastructure , Male , Microscopy, Electron, Scanning , Middle Aged , Models, Animal , Nanoparticles/chemistry , Particle Size , Permeability , Species Specificity , Swine , Viscosity
7.
Carbohydr Polym ; 231: 115741, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31888817

ABSTRACT

Methylcellulose (MC) has a demonstrated capacity to reduce fat absorption, hypothetically through bile salt (BS) activity inhibition. We investigated MC cholesterol-lowering mechanism, and compared the influence of two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), which differ slightly by their architecture and exhibit contrasting functions during lipolysis. BS/MC bulk interactions were investigated by rheology, and BS behaviour at the MC/water interface studied with surface pressure and ellipsometry measurements. In vitro lipolysis studies were performed to evaluate the effect of BS on MC-stabilised emulsion droplets microstructure, with confocal microscopy, and free fatty acids release, with the pH-stat method. Our results demonstrate that BS structure dictates their interactions with MC, which, in turn, impact lipolysis. Compared to NaTC, NaTDC alters MC viscoelasticity more significantly, which may correlate with its weaker ability to promote lipolysis, and desorbs from the interface at lower concentrations, which may explain its higher propensity to destabilise emulsions.

8.
Nanoscale ; 11(6): 2991-2998, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30698181

ABSTRACT

It is well recognised that the average UK diet does not contain sufficient fibre. However, the introduction of fibre is often at the detriment of the organoleptic properties of a food. In this study on the gastrointestinal fate of nanoparticles, we have used cellulose nano-crystals (CNCs) as Pickering stabilising agents in oil in water emulsions. These emulsions were found to be highly stable against coalescence. The CNC and control emulsions were then exposed to simulated upper gastrointestinal tract digestion and the results compared to those obtained from a conventional protein stabilised emulsion. Finally the digested emulsions were exposed to murine intestinal mucosa and lipid and bile absorption was monitored. Importantly, the results show that the CNCs were entrapped in the intestinal mucus layer and failed to reach the underlying epithelium. This entrapment may also have led to the reduced absorption of saturated lipids from the CNC stabilised emulsion versus the control emulsion. The results show the potential of CNCs as a safe and effective emulsifier.


Subject(s)
Cellulose/chemistry , Emulsions/chemistry , Intestinal Mucosa/metabolism , Nanoparticles/chemistry , Animals , Bile Acids and Salts/chemistry , Excipients/chemistry , Fatty Acids/chemistry , Food Additives/chemistry , Intestinal Mucosa/chemistry , Mice , Mice, Inbred C57BL
9.
Sci Rep ; 8(1): 11809, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30087367

ABSTRACT

Beta 1-3, 1-4 glucans ("beta-glucans") are one of the key components of the cell wall of cereals, complementing the main structural component cellulose. Beta-glucans are also an important source of soluble fibre in foods containing oats with claims of other beneficial nutritional properties such as plasma cholesterol lowering in humans. Key to the function of beta-glucans is their molecular weight and because of their high polydispersity - molecular weight distribution. Analytical ultracentrifugation provides a matrix-free approach (not requiring separation columns or media) to polymer molecular weight distribution determination. The sedimentation coefficient distribution is converted to a molecular weight distribution via a power law relation using an established procedure known as the Extended Fujita approach. We establish and apply the power law relation and Extended Fujita method for the first time to a series of native and processed oat beta-glucans. The application of this approach to beta-glucans from other sources is considered.


Subject(s)
Avena/chemistry , beta-Glucans/analysis , Molecular Weight , Ultracentrifugation/methods
10.
J Funct Foods ; 38(Pt A): 378-388, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29129983

ABSTRACT

Oat ß-glucan has been shown to play a positive role in influencing lipid and cholesterol metabolism. However, the mechanisms behind these beneficial effects are not fully understood. The purpose of the current work was to investigate some of the possible mechanisms behind the cholesterol lowering effect of oat ß-glucan, and how processing of oat modulates lipolysis. ß-Glucan release, and the rate and extent of lipolysis measured in the presence of different sources of oat ß-glucan, were investigated during gastrointestinal digestion. Only a fraction of the original ß-glucan content was released during digestion. Oat flakes and flour appeared to have a more significant effect on lipolysis than purified ß-glucan. These findings show that the positive action of ß-glucan is likely to involve complex processes and interactions with the food matrix. This work also highlights the importance of considering the structure and physicochemical properties of foods, and not just the nutrient content.

11.
Am J Physiol Gastrointest Liver Physiol ; 313(3): G239-G246, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28572083

ABSTRACT

The aim of this study was to determine the extent to which oat particle size in a porridge could alter glucose absorption, gastric emptying, gastrointestinal hormone response, and subjective feelings of appetite and satiety. Porridge was prepared from either oat flakes or oat flour with the same protein, fat, carbohydrate, and mass. These were fed to eight volunteers on separate days in a crossover study, and subjective appetite ratings, gastric contents, and plasma glucose, insulin, and gastrointestinal hormones were determined over a period of 3 h. The flake porridge gave a lower glucose response than the flour porridge, and there were apparent differences in gastric emptying in both the early and late postprandial phases. The appetite ratings showed similar differences between early- and late-phase behavior. The structure of the oat flakes remained sufficiently intact to delay their gastric emptying, leading to a lower glycemic response, even though initial gastric emptying rates were similar for the flake and flour porridge. This highlights the need to take food structure into account when considering relatively simple physiological measures and offering nutritional guidance.NEW & NOTEWORTHY The impact of food structure on glycemic response even in simple foods such as porridge is dependent on both timing of gastric emptying and the composition of what is emptied as well as duodenal starch digestion. Thus structure should be accounted for when considering relatively simple physiological measures and offering nutritional guidance.


Subject(s)
Avena , Food Handling/methods , Gastric Emptying/physiology , Glycemic Index , Particle Size , Blood Glucose , Cross-Over Studies , Edible Grain , Humans
12.
J Funct Foods ; 26: 418-427, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27790292

ABSTRACT

This study investigates the influence of the dietary fibre ß-glucan on nutrient composition and mucus permeability. Pigs were fed a standard diet or a diet containing twice the ß-glucan content for 3 days (n = 5 per group), followed by the collection of small intestinal mucus and tissue samples. Samples of the consumed diets were subjected to in vitro digestion to determine ß-glucan release, nutrient profile and assessment of mucus permeability. In vitro digestion of the diets indicated that 90% of the ß-glucan was released in the proximal small intestine. Measurements of intestinal mucus showed a reduction in permeability to 100 nm latex beads and also lipid from the digested enhanced ß-glucan diet. The data from this study show for the first time that reducing mass transfer of bile and lipid through the intestinal mucus layer may be one way in which this decrease in bile reabsorption by soluble fibre is enabled.

15.
Food Hydrocoll ; 52: 749-755, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26726279

ABSTRACT

In the small intestine the nature of the environment leads to a highly heterogeneous mucus layer primarily composed of the MUC2 mucin. We set out to investigate whether the soluble dietary fibre sodium alginate could alter the permeability of the mucus layer. The alginate was shown to freely diffuse into the mucus and to have minimal effect on the bulk rheology when added at concentrations below 0.1%. Despite this lack of interaction between the mucin and alginate, the addition of alginate had a marked effect on the diffusion of 500 nm probe particles, which decreased as a function of increasing alginate concentration. Finally, we passed a protein stabilised emulsion through a simulation of oral, gastric and small intestinal digestion. We subsequently showed that the addition of 0.1% alginate to porcine intestinal mucus decreased the diffusion of fluorescently labelled lipid present in the emulsion digesta. This reduction may be sufficient to reduce problems associated with high rates of lipid absorption such as hyperlipidaemia.

16.
Food Chem ; 198: 101-6, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26769510

ABSTRACT

The influence of pomegranate juice (PJ, replacing water as solvent) and citric acid (CA) on properties of pectin films was studied. PJ provided the films with a bright red color, and acted as a plasticizer. Increasing PJ/water ratio from 0/100 to 100/0 resulted in enhanced elongation (from 2% to 20%), decreased strength (from 10 to <2 MPa) and modulus (from 93 to <10 MPa), increased water vapor permeability (WVP, from 3 to 9 g.mm.kPa(-1).h(-1).m(-2)), and decreased insoluble matter (IM, from 35% to 24%). Although a crosslinking effect by CA was not confirmed, it has been suggested to occur from its effects on films. CA noticeably increased IM (from <10% to almost 40%); moreover, when measured on a dry film basis, the CA effects presented a noticeable tendency to increases strength and modulus, and to decrease WVP. The red color density was decreased by CA, suggesting a destabilization of anthocyanins.


Subject(s)
Citric Acid/chemistry , Lythraceae/chemistry , Pectins/chemistry , Plasticizers/analysis , Anthocyanins , Biopolymers
17.
Int J Biochem Cell Biol ; 75: 212-22, 2016 06.
Article in English | MEDLINE | ID: mdl-26520468

ABSTRACT

Nanoparticles (NPs) in biological fluids immediately interact with proteins forming a biomolecular corona (PC) that imparts their biological identity. While several studies on the formation of the PC in human plasma have been reported, the PC of orally administrated NPs has been less investigated, mostly in the presence of a food matrix. In fact, food matrixes when digested are subject of several dynamic changes that will certainly affect the PC formed on the NPs. The lack of studies on this topic is clearly related to the difficulty in isolating representative PC NPs from such a complex environment. In this work magnetite NPs were added to in vitro simulated digestion simultaneously with bread and PC NPs were isolated after gastric and duodenal phases by sucrose gradient ultracentrifugation (UC). The PC NPs were characterized in terms of size and protein composition. Translocation studies were then performed on Caco-2 monolayers in a serum free environment and cell morphology was characterized by confocal microscopy. PC NPs isolated from gastric and duodenal phases were different in size, surface charge and protein corona composition. NP cellular uptake was enhanced by the digestive PC inducing morphology changes in the cell monolayer. Overall, in this work we were able to isolate PC NPs from digested fluids in the presence of a food matrix and study their biological response on Caco-2 cells.


Subject(s)
Bread , Magnetite Nanoparticles/chemistry , Protein Corona/chemistry , Protein Corona/metabolism , Biomimetic Materials/metabolism , Body Fluids/metabolism , Digestion , Particle Size , Protein Transport
18.
Colloids Surf B Biointerfaces ; 135: 73-80, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26241918

ABSTRACT

Mucus provides a barrier to bacteria and toxins while allowing nutrient absorption and waste transport. Unlike colonic mucus, small intestinal mucus structure is poorly understood. This study aimed to provide evidence for a continuous, structured mucus layer and assess the diffusion of different sized particles through it. Mucus structure was assessed by histology and immunohistochemistry. Ultra-structure was assessed by scanning electron microscopy. Tracking of 100 nm and 500 nm latex beads was conducted using ex vivo porcine mucus. The porcine jejunum and ileum were filled with mucus. Layered MUC2 staining was visible throughout the small intestine, covering villus tips. Scanning electron microscopy showed net-like mucin sheets covering villi (211 ± 7 nm pore diameter). Particle tracking of 100 nm latex beads, showed no inhibition of diffusion through mucus while 500 nm beads displayed limited diffusion. These results suggest a continuous mucus layer exists throughout the small intestine, which is highly stratified adjacent to the epithelium. The network observed is consistent with previous observations and correlates with stratified MUC2 staining. Mucin pore size is consistent with free diffusion of 100 nm and limited diffusion of 500 nm particles. Small Intestinal mucus structure has important implications for drug delivery systems and prevention and treatment of conditions like mucositis and inflammatory bowel disease.


Subject(s)
Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Mucus/metabolism , Nanoparticles/metabolism , Animals , Ileum/metabolism , Intestinal Absorption , Intestinal Mucosa/chemistry , Intestinal Mucosa/ultrastructure , Intestine, Small/chemistry , Intestine, Small/ultrastructure , Jejunum/metabolism , Mice , Microspheres , Mucin-2/metabolism , Mucus/chemistry , Particle Size , Swine
19.
Nanoscale ; 7(28): 11980-90, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26108682

ABSTRACT

Nanoparticles (NPs) in contact with biological fluids are generally coated with environmental proteins, forming a stronger layer of proteins around the NP surface called the hard corona. Protein corona complexes provide the biological identity of the NPs and their isolation and characterization are essential to understand their in vitro and in vivo behaviour. Here we present a one-step methodology to recover NPs from complex biological media in a stable non-aggregated form without affecting the structure or composition of the corona. This method allows NPs to be separated from complex fluids containing biological particulates and in a form suitable for use in further experiments. The study has been performed systematically comparing the new proposed methodology to standard approaches for a wide panel of NPs. NPs were first incubated in the biological fluid and successively recovered by sucrose gradient ultracentrifugation in order to separate the NPs and their protein corona from the loosely bound proteins. The isolated NP-protein complexes were characterized by size and protein composition through Dynamic Light Scattering, Nanoparticle Tracking Analysis, SDS-PAGE and LC-MS. The protocol described is versatile and can be applied to diverse nanomaterials and complex fluids. It is shown to have higher resolution in separating the multiple protein corona complexes from a biological environment with a much lower impact on their in situ structure compared to conventional centrifugal approaches.


Subject(s)
Nanoparticles/chemistry , Proteins/chemistry , Humans
20.
PLoS One ; 9(4): e95274, 2014.
Article in English | MEDLINE | ID: mdl-24755941

ABSTRACT

The final boundary between digested food and the cells that take up nutrients in the small intestine is a protective layer of mucus. In this work, the microstructural organization and permeability of the intestinal mucus have been determined under conditions simulating those of infant and adult human small intestines. As a model, we used the mucus from the proximal (jejunal) small intestines of piglets and adult pigs. Confocal microscopy of both unfixed and fixed mucosal tissue showed mucus lining the entire jejunal epithelium. The mucus contained DNA from shed epithelial cells at different stages of degradation, with higher amounts of DNA found in the adult pig. The pig mucus comprised a coherent network of mucin and DNA with higher viscosity than the more heterogeneous piglet mucus, which resulted in increased permeability of the latter to 500-nm and 1-µm latex beads. Multiple-particle tracking experiments revealed that diffusion of the probe particles was considerably enhanced after treating mucus with DNase. The fraction of diffusive 500-nm probe particles increased in the pig mucus from 0.6% to 64% and in the piglet mucus from ca. 30% to 77% after the treatment. This suggests that extracellular DNA can significantly contribute to the microrheology and barrier properties of the intestinal mucus layer. To our knowledge, this is the first time that the structure and permeability of the small intestinal mucus have been compared between different age groups and the contribution of extracellular DNA highlighted. The results help to define rules governing colloidal transport in the developing small intestine. These are required for engineering orally administered pharmaceutical preparations with improved delivery, as well as for fabricating novel foods with enhanced nutritional quality or for controlled calorie uptake.


Subject(s)
Aging/physiology , DNA/metabolism , Extracellular Space/metabolism , Intestine, Small/physiology , Mucus/metabolism , Animals , Biological Transport , Diffusion , Intestinal Mucosa/cytology , Intestinal Mucosa/physiology , Intestine, Small/cytology , Rheology , Static Electricity , Sus scrofa , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...