Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 354: 127178, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35436538

ABSTRACT

In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.


Subject(s)
Biofuels , Carbon Dioxide , Carbon Dioxide/chemistry , Electrodes , Fermentation , Gases
2.
Chemosphere ; 287(Pt 3): 132188, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34543900

ABSTRACT

High-rate production of acetate and other value-added products from the reduction of CO2 in microbial electrosynthesis (MES) using acetogens can be achieved with high reducing power where H2 appears as a key electron mediator. H2 evolution using metal cathodes can enhance the availability of H2 to support high-rate microbial reduction of CO2. Due to the low solubility of H2, the availability of H2 remains limited to the bacteria. In this study, we investigated the performances of Sporomusa ovata for CO2 reduction when dual cathodes were used together in an MES, one was regular carbon cathode, and the other was a titanium mesh that allows higher hydrogen evolution. The dual cathode configuration was investigated in two sets of MES, one set had the usual S. ovata inoculated graphite rod, and another set had a synthetic biofilm-imprinted carbon cloth. Additionally, the headspace gas in MES was recirculated to increase the H2 availability to the bacteria in suspension. High-rate CO2 reduction was observed at -0.9 V vs Ag/AgCl with dual cathode configuration as compared to single cathodes. High titers of acetate (up to ∼11 g/L) with maximum instantaneous rates of 0.68-0.7 g/L/d at -0.9 V vs Ag/AgCl were observed, which are higher than the production rates reported in the literatures for S. ovata using MES with surface modified cathodes. A high H2 availability supported the high-rate acetate production from CO2 with diminished electricity input.


Subject(s)
Carbon Dioxide , Firmicutes , Electrodes , Hydrogen
3.
Chemosphere ; 291(Pt 1): 132843, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34767847

ABSTRACT

Microbial electrochemical approach is an emerging technology for biogas upgrading through carbon dioxide (CO2) reduction and biomethane (or value-added products) production. There is limited literature critically reviewing the latest scientific developments on the bioelectrochemical system (BES) based biogas upgrading technologies, including CO2 reduction efficiency, methane (CH4) yields, reactor operating conditions, and electrode materials tested in the BES reactor. This review analyzes the reported performance and identifies crucial parameters considered for future optimization, which is currently missing. Further, the performances of BES approach of biogas upgrading under various operating settings in particular fed-batch, continuous mode in connection to the microbial dynamics and cathode materials have been thoroughly scrutinized and discussed. Additionally, other versatile application options associated with BES based biogas upgrading, such as resource recovery, are presented. Three-dimensional electrode materials have shown superior performance in supplying the electrons for the reduction of CO2 to CH4. Most of the studies on the biogas upgrading process conclude hydrogen (H2) mediated electron transfer mechanism in BES biogas upgrading.


Subject(s)
Biofuels , Carbon Dioxide , Bioreactors , Carbon Dioxide/analysis , Hydrogen , Methane
4.
Sci Total Environ ; 766: 142668, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33077225

ABSTRACT

Microbial inocula from marine origins are less explored for CO2 reduction in microbial electrosynthesis (MES) system, although effective CO2-fixing communities in marine environments are well-documented. We explored natural saline habitats, mainly salt marsh (SM) and mangrove (M) sediments, as potential inoculum sources for enriching salt-tolerant CO2 reducing community using two enrichment strategies: H2:CO2 (80:20) enrichment in serum vials and enrichment in cathode chamber of MES reactors operated at -1.0 V vs. Ag/AgCl. Porous ceramic hollow tube wrapped with carbon cloth was used as cathode and for direct CO2 delivery to CO2 reducing communities growing on the cathode surface. Methanogenesis was dominant in both the M- and SM-seeded MES and the methanogenic Archaea Methanococcus was the most dominant genus. Methane production was slightly higher in the SM-seeded MES (4.9 ± 1.7 mmol) compared to the M-seeded MES (3.8 ± 1.1 mmol). In contrast, acetate production was almost two times higher in the M-seeded MES (3.1 ± 0.9 mmol) than SM-seeded MES (1.5 ± 1.3 mmol). The high relative abundance of the genus Acetobacterium in the M-seeded serum vials correlates with the high acetate production obtained. The different enrichment strategies affected the community composition, though the communities in MES reactors and serum vials were performing similar functions (methanogenesis and acetogenesis). Despite similar operating conditions, the microbial community composition of M-seeded serum vials and MES reactors differed from the SM-seeded serum vials and MES reactors, supporting the importance of inoculum source in the evolution of CO2-reducing microbial communities.


Subject(s)
Carbon Dioxide , Carbon , Ceramics , Electrodes , Porosity
5.
Bioresour Technol ; 302: 122863, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32019708

ABSTRACT

Recycling CO2 into organic products through microbial electrosynthesis (MES) is attractive from the perspective of circular bioeconomy. However, several challenges need to be addressed before scaling-up MES systems. In this review, recent advances in electrode materials, microbe-catalyzed CO2 reduction and MES energy consumption are discussed in detail. Anode materials are briefly reviewed first, with several strategies proposed to reduce the energy input for electron generation and enhance MES bioeconomy. This was followed by discussions on MES cathode materials and configurations for enhanced chemolithoautotroph growth and CO2 reduction. Various chemolithoautotrophs, effective for CO2 reduction and diverse bioproduct formation, on MES cathode were also discussed. Finally, research efforts on developing cost-effective process for bioproduct extraction from MES are presented. Future perspectives to improve product formation and reduce energy cost are discussed to realize the application of the MES as a chemical production platform in the context of building a circular economy.


Subject(s)
Carbon Dioxide , Electrodes
6.
Front Microbiol ; 10: 2563, 2019.
Article in English | MEDLINE | ID: mdl-31787955

ABSTRACT

Homoacetogens are efficient CO2 fixing bacteria using H2 as electron donor to produce acetate. These organisms can be enriched at the biocathode of microbial electrosynthesis (MES) for electricity-driven CO2 reduction to acetate. Studies exploring homoacetogens in MES are mainly conducted using pure or mix-culture anaerobic inocula from samples with standard environmental conditions. Extreme marine environments host unique microbial communities including homoacetogens that may have unique capabilities due to their adaptation to harsh environmental conditions. Anaerobic deep-sea brine pools are hypersaline and metalliferous environments and homoacetogens can be expected to live in these environments due to their remarkable metabolic flexibility and energy-efficient biosynthesis. However, brine pools have never been explored as inocula for the enrichment of homacetogens in MES. Here we used the saline water from a Red Sea brine pool as inoculum for the enrichment of halophilic homoacetogens at the biocathode (-1 V vs. Ag/AgCl) of MES. Volatile fatty acids, especially acetate, along with hydrogen gas were produced in MES systems operated at 25 and 10% salinity. Acetate concentration increased when MES was operated at a lower salinity ∼3.5%, representing typical seawater salinity. Amplicon sequencing and genome-centric metagenomics of matured cathodic biofilm showed dominance of the genus Marinobacter and phylum Firmicutes at all tested salinities. Seventeen high-quality draft metagenome-assembled genomes (MAGs) were extracted from the biocathode samples. The recovered MAGs accounted for 87 ± 4% of the quality filtered sequence reads. Genome analysis of the MAGs suggested CO2 fixation via Wood-Ljundahl pathway by members of the phylum Firmicutes and the fixed CO2 was possibly utilized by Marinobacter sp. for growth by consuming O2 escaping from the anode to the cathode for respiration. The enrichment of Marinobacter sp. with homoacetogens was only possible because of the specific cathodic environment in MES. These findings suggest that in organic carbon-limited saline environments, Marinobacter spp. can live in consortia with CO2 fixing bacteria such as homoacetogens, which can provide them with fixed carbon as a source of carbon and energy.

7.
Faraday Discuss ; 202: 433-449, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28657636

ABSTRACT

The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO2 as a feedstock for chemicals is gaining much attention, since CO2 is abundantly available and its use is independent of the food supply chain. MES based on CO2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO2 : N2 gas. The highest acetate production rate of 149 mg L-1 d-1 was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L-1 d-1. In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended micro-organisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO2 using MES. Certainly, other process optimizations will be required to establish MES as an innovative sustainable technology for manufacturing biochemicals from CO2 as a next generation feedstock.


Subject(s)
Bioelectric Energy Sources/microbiology , Carbon Dioxide/metabolism , Electrochemical Techniques , Biomass , Carbon Dioxide/chemistry , Electricity
8.
Bioelectrochemistry ; 113: 26-34, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27631151

ABSTRACT

In microbial electrosynthesis (MES), CO2 can be reduced preferably to multi-carbon chemicals by a biocathode-based process which uses electrochemically active bacteria as catalysts. A mixed anaerobic consortium from biological origin typically produces methane from CO2 reduction which circumvents production of multi-carbon compounds. This study aimed to develop a stable and robust CO2 reducing biocathode from a mixed culture inoculum avoiding the methane generation. An effective approach was demonstrated based on (i) an enrichment procedure involving inoculum pre-treatment and several culture transfers in H2:CO2 media, (ii) a transfer from heterotrophic to autotrophic growth and (iii) a sequential batch operation. Biomass growth and gradual acclimation to CO2 electro-reduction accomplished a maximum acetate production rate of 400mgLcatholyte-1d-1 at -1V (vs. Ag/AgCl). Methane was never detected in more than 300days of operation. Accumulation of acetate up to 7-10gL-1 was repeatedly attained by supplying (80:20) CO2:N2 mixture at -0.9 to -1V (vs. Ag/AgCl). In addition, ethanol and butyrate were also produced from CO2 reduction. Thus, a robust CO2 reducing biocathode can be developed from a mixed culture avoiding methane generation by adopting the specific culture enrichment and operation procedures without the direct addition of chemical inhibitor.


Subject(s)
Bioreactors/microbiology , Carbon Dioxide/metabolism , Acetates/metabolism , Autotrophic Processes , Carbon Dioxide/chemistry , Catalysis , Clostridium/growth & development , Clostridium/metabolism , Electrochemistry , Electrodes , Methane/biosynthesis , Oxidation-Reduction , Time Factors
9.
Environ Sci Pollut Res Int ; 23(22): 22292-22308, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27436381

ABSTRACT

Microbial catalysis of carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode is a highly attractive application of microbial electrosynthesis (MES). The microbes reduce CO2 by either taking the electrons or reducing the equivalents produced at the cathode. While using gaseous CO2 as the carbon source, the biological reduction process depends on the dissolution and mass transfer of CO2 in the electrolyte. In order to deal with this issue, a gas diffusion electrode (GDE) was investigated by feeding CO2 through the GDE into the MES reactor for its reduction at the biocathode. A combination of the catalyst layer (porous activated carbon and Teflon binder) and the hydrophobic gas diffusion layer (GDL) creates a three-phase interface at the electrode. So, CO2 and reducing equivalents will be available to the biocatalyst on the cathode surface. An enriched inoculum consisting of acetogenic bacteria, prepared from an anaerobic sludge, was used as a biocatalyst. The cathode potential was maintained at -1.1 V vs Ag/AgCl to facilitate direct and/or hydrogen-mediated CO2 reduction. Bioelectrochemical CO2 reduction mainly produced acetate but also extended the products to ethanol and butyrate. Average acetate production rates of 32 and 61 mg/L/day, respectively, with 20 and 80 % CO2 gas mixture feed were achieved with 10 cm2 of GDE. The maximum acetate production rate remained 238 mg/L/day for 20 % CO2 gas mixture. In conclusion, a gas diffusion biocathode supported bioelectrochemical CO2 reduction with enhanced mass transfer rate at continuous supply of gaseous CO2. Graphical abstract ᅟ.


Subject(s)
Bacteria/metabolism , Bioelectric Energy Sources/microbiology , Carbon Dioxide/chemistry , Sewage/microbiology , Acetates/chemistry , Anaerobiosis , Bacteria/classification , Bioreactors , Carbon , Catalysis , Conservation of Natural Resources , Electrodes , Environmental Pollutants , Hydrogen/chemistry
10.
Ultrason Sonochem ; 27: 339-344, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26186853

ABSTRACT

Near-well ultrasonic processing technology is characterized by high adaptability, simple operation, low cost and zero pollution. The main plugs of oil production include paraffin deposition plug, polymer plug, and drilling fluid plug etc. Although some good results have been obtained through laboratory experiments and field tests, systematic and intensive studies are absent for certain major aspects, such as: effects of ultrasonic treatment for different kinds of plugs and whether effect of ultrasound-chemicals combination deplugging is better than that of ultrasonic deplugging. In this paper, the experiments of removing drilling fluid plug, paraffin deposition plug and polymer plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging respectively are carried out. Results show that the effect of ultrasound-chemical combination deplugging is clearly better than that of using ultrasonic wave and chemical deplugging agent separately, which indicates that ultrasonic deplugging and chemical deplugging can produce synergetic effects. On the one hand, ultrasonic treatment can boost the activity of chemical deplugging agent and turn chemical deplugging into dynamic chemical process, promoting chemical agent reaction speed and enhancing deplugging effect; on the other hand, chemical agent can reduce the adhesion strength of plugs so that ultrasonic deplugging effect can be improved significantly. Experimental results provide important reference for near-well ultrasonic processing technology.

11.
Bioresour Technol ; 195: 14-24, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26066971

ABSTRACT

Carbon dioxide (CO2) reduction to multi-carbon compounds at the cathode using chemolithoautotrophs is an emerging application of microbial electrosynthesis (MES). In this study, CO2 reduction in MES was investigated at hydrogen evolving potentials, separately by a mixed culture and Clostridium ljungdahlii, using a graphite felt and stainless steel assembly as cathode. The mixed culture reactor produced acetate at the maximum rate of 1.3 mM d(-1), along with methane and hydrogen at -1.1 V/Ag/AgCl. Over 160 days of run-time in four fed-batches, 26% of bicarbonate was converted to acetate between day 28 and 41, whereas in the late batches, methane production prevailed. Out of 45 days of run-time in the C. ljungdahlii reactor, 2.4 mM d(-1) acetate production was achieved at -0.9 V/Ag/AgCl in Batch 1. Simultaneous product degradation occurred when the mixed culture was not selectively enriched. Hydrogen evolution is potentially the rapid way of transferring electrons to the biocatalysts for higher bioproduction rates.


Subject(s)
Bioelectric Energy Sources , Carbon Dioxide/metabolism , Cell Culture Techniques/methods , Graphite/chemistry , Stainless Steel/chemistry , Acetates/metabolism , Autotrophic Processes , Bicarbonates/metabolism , Biofilms/growth & development , Bioreactors , Catalysis , Clostridium/metabolism , Electrochemical Techniques , Electrodes , Hydrogen/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...