Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 7(6): 459-63, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18425133

ABSTRACT

At micro- and nanoscales, materials with high Young's moduli and low densities are of great interest for high-frequency micromechanical resonator devices. Incorporating carbon nanotubes (CNTs), with their unmatched properties, has added functionality to many man-made composites. We report on the fabrication of < or = 100-nm-thick laminates by sputter-deposition of aluminium onto a two-dimensional single-walled CNT network. These nanolaminates--composed of Al, its native oxide Al(2)O(3) and CNTs--are fashioned, in a scalable manner, into suspended doubly clamped micromechanical beams. Dynamic flexural measurements show marked increases in resonant frequencies for nanolaminates with Al-CNT laminae. Such increases, further supported by quasi-static flexural measurements, are partly attributable to enhancements in elastic properties arising from the addition of CNTs. As a consequence, these nanolaminate micromechanical resonators show significant suppression of mechanical nonlinearity and enhanced strength, both of which are advantageous for practical applications and analogous to biological nanocomposites, similarly composed of high-aspect-ratio, mechanically superior mineral platelets in a soft protein matrix.


Subject(s)
Aluminum/chemistry , Nanotubes, Carbon
2.
Nano Lett ; 8(12): 4483-7, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19367853

ABSTRACT

For the first time, vertically suspended and stretched carbon nanotube network junctions were fabricated in large quantity via the directed assembly strategy using only conventional microfabrication facilities. In this process, surface molecular patterns on the side-wall of the Al structures were utilized to guide the assembly and alignment of carbon nanotubes in the solution. We also performed extensive experimental (electrical and mechanical) analysis and theoretical simulation about the vertically suspended single-walled carbon nanotube network junctions. The junctions exhibited semiconductor-like conductance behavior. Furthermore, we demonstrated gas sensing and electromechanical sensing using these devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...