Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 10(1): 10483, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32591614

ABSTRACT

Silicon carbide (SiC) and SiC/SiC composites are important candidate materials for use in the nuclear industry. Coarse grain models are the only tools capable of modelling defect accumulation under different irradiation conditions at a realistic time and length scale. The core of any such model is the so-called "source term", which is described by the primary damage. In the present work, classical molecular dynamics (MD), binary collision approximation (BCA) and NRT model are applied to describe collision cascades in 3C-SiC with primary knock-on atom (PKA) energy in the range 1-100 keV. As such, BCA and NRT are benchmarked against MD. Particular care was taken to account for electronic stopping and the use of a threshold displacement energy consistent with density functional theory and experiment. Models and regressions are developed to characterize the primary damage in terms of number of stable Frenkel pairs and their cluster size distribution, anti-sites, and defect type. As such, an accurate cascade database is developed with simple descriptors. One of the main results shows that the defect cluster size distribution follows the geometric distribution rather than a power law.

2.
Sci Rep ; 9(1): 16215, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31700084

ABSTRACT

In metallurgical applications, precipitation strengthening is of great technological importance to engineer materials with the required strength. While precipitation hardening is essential for many applications involving operation at elevated temperatures, its subsequent embrittlement can be a showstopper for the overall performance of a component. In the nuclear industry, irradiation-induced/enhanced precipitation and the resulting embrittlement often limit the lifetime of components. In fusion applications, tungsten (W) based alloys are known to harden and embrittle as a result of irradiation-assisted transmutation to rhenium (Re) and its subsequent precipitation into non-coherent precipitates. Hence, a fundamental understanding of the interaction of dislocations with non-coherent precipitates is of great interest. In the present work, the interaction of dislocations with non-coherent Re-rich σ, χ and hcp phase precipitates embedded in a bcc W matrix is assessed. Large-scale atomistic simulations are performed to clarify the interaction mechanisms and derive the obstacle strength of the precipitates in the quasi-static limit. Thereby the impact of precipitate shape, size, interspacing and composition is assessed. Based on those results, an analytical model to predict precipitation hardening of σ, χ and hcp phase particles in bcc W is proposed and compared to available experimental data from mechanical tests on irradiated materials.

3.
J Phys Condens Matter ; 26(39): 395001, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25138240

ABSTRACT

We have developed a new theoretical model for deuterium (D) retention in tungsten-based alloys on the basis of its being trapped at dislocations and transported to the surface via the dislocation network with parameters determined by ab initio calculations. The model is used to explain experimentally observed trends of D retention under sub-threshold implantation, which does not produce stable lattice defects to act as traps for D in conventional models. Saturation of D retention with implantation dose and effects due to alloying of tungsten with, e.g. tantalum, are evaluated, and comparison of the model predictions with experimental observations under high-flux plasma implantation conditions is presented.


Subject(s)
Alloys/chemistry , Deuterium/chemistry , Tungsten/chemistry , Computer Simulation , Models, Molecular , Models, Theoretical
4.
J Phys Condens Matter ; 26(16): 165402, 2014 Apr 23.
Article in English | MEDLINE | ID: mdl-24691268

ABSTRACT

This work closes a series of molecular dynamics studies addressing how solute/interstitial segregation at dislocation loops affects their interaction with moving dislocations in body-centred cubic Fe-based alloys. We consider the interaction of 〈 100 〉 interstitial dislocation loops decorated by different numbers of carbon atoms in a wide temperature range. The results reveal clearly that the decoration affects the reaction mechanism and increases the unpinning stress, in general. The most pronounced and reproducible increase of the unpinning stress is found in the intermediate temperature range from 300 up to 600 K. The carbon-decoration effect is related to the modification of the loop-dislocation reaction and its importance at the technologically relevant neutron irradiation conditions is discussed.

5.
J Phys Condens Matter ; 25(31): 315401, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23838265

ABSTRACT

Reduced activation steels are considered as structural materials for future fusion reactors. Besides iron and the main alloying element chromium, these steels contain other minor alloying elements, typically tungsten, vanadium and tantalum. In this work we study the impact of chromium and tungsten, being major alloying elements of ferritic Fe-Cr-W-based steels, on the stability and mobility of vacancy defects, typically formed under irradiation in collision cascades. For this purpose, we perform ab initio calculations, develop a many-body interatomic potential (EAM formalism) for large-scale calculations, validate the potential and apply it using an atomistic kinetic Monte Carlo method to characterize the lifetime and diffusivity of vacancy clusters. To distinguish the role of Cr and W we perform atomistic kinetic Monte Carlo simulations in Fe-Cr, Fe-W and Fe-Cr-W alloys. Within the limitation of transferability of the potentials it is found that both Cr and W enhance the diffusivity of vacancy clusters, while only W strongly reduces their lifetime. The cluster lifetime reduction increases with W concentration and saturates at about 1-2 at.%. The obtained results imply that W acts as an efficient 'breaker' of small migrating vacancy clusters and therefore the short-term annealing process of cascade debris is modified by the presence of W, even in small concentrations.

6.
J Phys Condens Matter ; 25(26): 265702, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23756468

ABSTRACT

The understanding of radiation-induced strengthening in ferritic FeCr-based steels remains an essential issue in the assessment of materials for fusion and fission reactors. Both early and recent experimental works on Fe-Cr alloys reveal Cr segregation on radiation-induced nanostructural features (mainly dislocation loops), whose impact on the modification of the mechanical response of the material might be key for explaining quantitatively the radiation-induced strengthening in these alloys. In this work, we use molecular dynamics to study systematically the interaction of dislocations with 1/2<111> and <100> loops in all possible orientations, both enriched by Cr atoms and undecorated, for different temperatures, loop sizes and dislocation velocities. The configurations of the enriched loops have been obtained using a non-rigid lattice Monte Carlo method. The study reveals that Cr segregation influences the interaction mechanisms with both 1/2<111> and <100> loops. The overall effect of Cr enrichment is to penalize the mobility of intrinsically glissile 1/2<111> loops, modifying the reaction mechanisms as a result. The following three most important effects associated with Cr enrichment have been revealed: (i) absence of dynamic drag; (ii) suppression of complete absorption; (iii) enhanced strength of small dislocation loops (2 nm and smaller). Overall the effect of the Cr enrichment is therefore to increase the unpinning stress, so experimentally 'invisible' nanostructural features may also contribute to radiation-induced strengthening. The reasons for the modification of the mechanisms are explained and the impact of the loading conditions is discussed.


Subject(s)
Alloys/chemistry , Chromium/chemistry , Chromium/radiation effects , Iron/chemistry , Iron/radiation effects , Absorption , Computer Simulation , Materials Testing , Models, Molecular , Molecular Dynamics Simulation
7.
J Phys Condens Matter ; 24(38): 385401, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-22918119

ABSTRACT

In this work we have summarized the available ab initio data addressing the interaction of carbon with vacancy defects in bcc Fe and performed additional calculations to extend the available dataset. Using an ab initio based parameterization, we apply object kinetic Monte Carlo (OKMC) simulations to model the process of isochronal annealing in bcc Fe doped with carbon to compare with experimental data. As a result of this work, we clarify that a binding energy of ~0.65 eV for a vacancy-carbon (V-C) pair fits the available experimental data best. It is found that the V (2)-C complex is less stable than the V-C pair and its dissociation with activation energy of 0.55 + 0.49 eV also rationalizes a number of experimental data where the breakup of V-C complexes was assumed instead. From the summarized ab initio data, the subsequently obtained OKMC results and critical discussion, provided here, we suggest that the twofold interpretation of the V-C binding energy, which is believed to vary between 0.47 and 0.65 eV, depending on the ab initio approximation, should be removed. The stability and mobility of small and presumably immobile SIA clusters formed at stage II is also discussed in the view of experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...