Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(30): 11491-11498, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37478487

ABSTRACT

Recent advances in native mass spectrometry (MS) and denatured intact protein MS have made these techniques essential for biotherapeutic characterization. As MS analysis has increased in throughput and scale, new data analysis workflows are needed to provide rapid quantitation from large datasets. Here, we describe the UniDec processing pipeline (UPP) for the analysis of batched biotherapeutic intact MS data. UPP is built into the UniDec software package, which provides fast processing, deconvolution, and peak detection. The user and programming interfaces for UPP read a spreadsheet that contains the data file names, deconvolution parameters, and quantitation settings. After iterating through the spreadsheet and analyzing each file, it returns a spreadsheet of results and HTML reports. We demonstrate the use of UPP to measure the correct pairing percentage on a set of bispecific antibody data and to measure drug-to-antibody ratios from antibody-drug conjugates. Moreover, because the software is free and open-source, users can easily build on this platform to create customized workflows and calculations. Thus, UPP provides a flexible workflow that can be deployed in diverse settings and for a wide range of biotherapeutic applications.


Subject(s)
Data Analysis , Software , Mass Spectrometry/methods , Workflow
2.
Mol Cell Proteomics ; 22(2): 100496, 2023 02.
Article in English | MEDLINE | ID: mdl-36640924

ABSTRACT

Transcriptional enhanced associate domain family members 1 to 4 (TEADs) are a family of four transcription factors and the major transcriptional effectors of the Hippo pathway. In order to activate transcription, TEADs rely on interactions with other proteins, such as the transcriptional effectors Yes-associated protein and transcriptional co-activator with PDZ-binding motif. Nuclear protein interactions involving TEADs influence the transcriptional regulation of genes involved in cell growth, tissue homeostasis, and tumorigenesis. Clearly, protein interactions for TEADs are functionally important, but the full repertoire of TEAD interaction partners remains unknown. Here, we employed an affinity purification mass spectrometry approach to identify nuclear interacting partners of TEADs. We performed affinity purification mass spectrometry experiment in parallel in two different cell types and compared a wildtype TEAD bait protein to a nuclear localization sequence mutant that does not localize to the nucleus. We quantified the results using SAINT analysis and found a significant enrichment of proteins linked to DNA damage including X-ray repair cross-complementing protein 5 (XRCC5), X-ray repair cross-complementing protein 6 (XRCC6), poly(ADP-ribose) polymerase 1 (PARP1), and Rap1-interacting factor 1 (RIF1). In cellular assays, we found that TEADs co-localize with DNA damage-induced nuclear foci marked by histone H2AX phosphorylated on S139 (γH2AX) and Rap1-interacting factor 1. We also found that depletion of TEAD proteins makes cells more susceptible to DNA damage by various agents and that depletion of TEADs promotes genomic instability. Additionally, depleting TEADs dampens the efficiency of DNA double-stranded break repair in reporter assays. Our results connect TEADs to DNA damage response processes, positioning DNA damage as an important avenue for further research of TEAD proteins.


Subject(s)
DNA Damage , DNA Repair , TEA Domain Transcription Factors , Humans , Carcinogenesis/metabolism , DNA Repair/physiology , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , TEA Domain Transcription Factors/metabolism
3.
Nat Aging ; 2(9): 837-850, 2022 09.
Article in English | MEDLINE | ID: mdl-37118504

ABSTRACT

Microglia and complement can mediate neurodegeneration in Alzheimer's disease (AD). By integrative multi-omics analysis, here we show that astrocytic and microglial proteins are increased in TauP301S synapse fractions with age and in a C1q-dependent manner. In addition to microglia, we identified that astrocytes contribute substantially to synapse elimination in TauP301S hippocampi. Notably, we found relatively more excitatory synapse marker proteins in astrocytic lysosomes, whereas microglial lysosomes contained more inhibitory synapse material. C1q deletion reduced astrocyte-synapse association and decreased astrocytic and microglial synapses engulfment in TauP301S mice and rescued synapse density. Finally, in an AD mouse model that combines ß-amyloid and Tau pathologies, deletion of the AD risk gene Trem2 impaired microglial phagocytosis of synapses, whereas astrocytes engulfed more inhibitory synapses around plaques. Together, our data reveal that astrocytes contact and eliminate synapses in a C1q-dependent manner and thereby contribute to pathological synapse loss and that astrocytic phagocytosis can compensate for microglial dysfunction.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Complement C1q/genetics , Microglia/metabolism , Astrocytes/metabolism , Synapses/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
4.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33723046

ABSTRACT

Inflammasomes sense a number of pathogen and host damage signals to initiate a signaling cascade that triggers inflammatory cell death, termed pyroptosis. The inflammatory caspases (1/4/5/11) are the key effectors of this process through cleavage and activation of the pore-forming protein gasdermin D. Caspase-1 also activates proinflammatory interleukins, IL-1ß and IL-18, via proteolysis. However, compared to the well-studied apoptotic caspases, the identity of substrates and therefore biological functions of the inflammatory caspases remain limited. Here, we construct, validate, and apply an antibody toolset for direct detection of neo-C termini generated by inflammatory caspase proteolysis. By combining rabbit immune phage display with a set of degenerate and defined target peptides, we discovered two monoclonal antibodies that bind peptides with a similar degenerate recognition motif as the inflammatory caspases without recognizing the canonical apoptotic caspase recognition motif. Crystal structure analyses revealed the molecular basis of this strong yet paradoxical degenerate mode of peptide recognition. One antibody selectively immunoprecipitated cleaved forms of known and unknown inflammatory caspase substrates, allowing the identification of over 300 putative substrates of the caspase-4 noncanonical inflammasome, including caspase-7. This dataset will provide a path toward developing blood-based biomarkers of inflammasome activation. Overall, our study establishes tools to discover and detect inflammatory caspase substrates and functions, provides a workflow for designing antibody reagents to study cell signaling, and extends the growing evidence of biological cross talk between the apoptotic and inflammatory caspases.


Subject(s)
Amino Acid Motifs , Antibodies/chemistry , Antibodies/metabolism , Binding Sites , Caspases/metabolism , Inflammasomes/metabolism , Amino Acid Sequence , Caspases/chemistry , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Proteolysis , Signal Transduction , Structure-Activity Relationship
5.
Cell ; 182(2): 329-344.e19, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32589946

ABSTRACT

Cell surface receptors and their interactions play a central role in physiological and pathological signaling. Despite its clinical relevance, the immunoglobulin superfamily (IgSF) remains uncharacterized and underrepresented in databases. Here, we present a systematic extracellular protein map, the IgSF interactome. Using a high-throughput technology to interrogate most single transmembrane receptors for binding to 445 IgSF proteins, we identify over 500 interactions, 82% previously undocumented, and confirm more than 60 receptor-ligand pairs using orthogonal assays. Our study reveals a map of cell-type-specific interactions and the landscape of dysregulated receptor-ligand crosstalk in cancer, including selective loss of function for tumor-associated mutations. Furthermore, investigation of the IgSF interactome in a large cohort of cancer patients identifies interacting protein signatures associated with clinical outcome. The IgSF interactome represents an important resource to fuel biological discoveries and a framework for understanding the functional organization of the surfaceome during homeostasis and disease, ultimately informing therapeutic development.


Subject(s)
Immunoglobulins/metabolism , Neoplasms/pathology , Protein Interaction Maps , B7-H1 Antigen/metabolism , Carcinoembryonic Antigen/metabolism , Cell Communication , Cluster Analysis , Culture Media, Conditioned/chemistry , HEK293 Cells , Humans , Immunoglobulins/chemistry , Immunoglobulins/genetics , Ligands , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Protein Binding , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
6.
Neuron ; 100(6): 1322-1336.e7, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30392797

ABSTRACT

Synapse loss and Tau pathology are hallmarks of Alzheimer's disease (AD) and other tauopathies, but how Tau pathology causes synapse loss is unclear. We used unbiased proteomic analysis of postsynaptic densities (PSDs) in Tau-P301S transgenic mice to identify Tau-dependent alterations in synapses prior to overt neurodegeneration. Multiple proteins and pathways were altered in Tau-P301S PSDs, including depletion of a set of GTPase-regulatory proteins that leads to actin cytoskeletal defects and loss of dendritic spines. Furthermore, we found striking accumulation of complement C1q in the PSDs of Tau-P301S mice and AD patients. At synapses, C1q decorated perisynaptic membranes, accumulated in correlation with phospho-Tau, and was associated with augmented microglial engulfment of synapses and decline of synapse density. A C1q-blocking antibody inhibited microglial synapse removal in cultured neurons and in Tau-P301S mice, rescuing synapse density. Thus, inhibiting complement-mediated synapse removal by microglia could be a potential therapeutic target for Tau-associated neurodegeneration.


Subject(s)
Antibodies/therapeutic use , Complement C1q/immunology , Synapses/metabolism , Tauopathies/drug therapy , Tauopathies/pathology , tau Proteins/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Animals, Newborn , Cell Differentiation , Cells, Cultured , Complement C1q/metabolism , Complement C1q/ultrastructure , Embryo, Mammalian , Female , Humans , Induced Pluripotent Stem Cells/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Post-Synaptic Density/metabolism , Post-Synaptic Density/pathology , Post-Synaptic Density/ultrastructure , Presenilin-2/genetics , Presenilin-2/metabolism , Prion Proteins/genetics , Prion Proteins/metabolism , Proteome/metabolism , Rats , Synapses/drug effects , Synapses/ultrastructure , Tauopathies/diagnostic imaging , Tauopathies/genetics , tau Proteins/genetics
8.
Cell Rep ; 16(10): 2605-2617, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27568559

ABSTRACT

The Nrf2 pathway is frequently activated in human cancers through mutations in Nrf2 or its negative regulator KEAP1. Using a cell-line-derived gene signature for Nrf2 pathway activation, we found that some tumors show high Nrf2 activity in the absence of known mutations in the pathway. An analysis of splice variants in oncogenes revealed that such tumors express abnormal transcript variants from the NFE2L2 gene (encoding Nrf2) that lack exon 2, or exons 2 and 3, and encode Nrf2 protein isoforms missing the KEAP1 interaction domain. The Nrf2 alterations result in the loss of interaction with KEAP1, Nrf2 stabilization, induction of a Nrf2 transcriptional response, and Nrf2 pathway dependence. In all analyzed cases, transcript variants were the result of heterozygous genomic microdeletions. Thus, we identify an alternative mechanism for Nrf2 pathway activation in human tumors and elucidate its functional consequences.


Subject(s)
Exons/genetics , Mutation/genetics , NF-E2-Related Factor 2/genetics , Neoplasms/genetics , Signal Transduction , Cell Line, Tumor , Cell Survival/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Sequence Deletion/genetics
9.
Mol Cell Proteomics ; 15(5): 1489-97, 2016 05.
Article in English | MEDLINE | ID: mdl-26873251

ABSTRACT

High-throughput genomic and proteomic studies have generated near-comprehensive catalogs of biological constituents within many model systems. Nevertheless, static catalogs are often insufficient to fully describe the dynamic processes that drive biology. Quantitative proteomic techniques address this need by providing insight into closely related biological states such as the stages of a therapeutic response or cellular differentiation. The maturation of quantitative proteomics in recent years has brought about a variety of technologies, each with their own strengths and weaknesses. It can be difficult for those unfamiliar with this evolving landscape to match the experiment at hand with the best tool for the job. Here, we outline quantitative methods for proteomic mass spectrometry and discuss their benefits and weaknesses from the perspective of the biologist aiming to generate meaningful data and address mechanistic questions.


Subject(s)
Mass Spectrometry/methods , Proteomics/methods , Databases, Protein , Humans , Models, Biological
10.
PLoS One ; 10(9): e0138350, 2015.
Article in English | MEDLINE | ID: mdl-26379037

ABSTRACT

Manganese plays a central role in cellular detoxification of reactive oxygen species (ROS). Therefore, manganese acquisition is considered to be important for bacterial pathogenesis by counteracting the oxidative burst of phagocytic cells during host infection. However, detailed analysis of the interplay between bacterial manganese acquisition and phagocytic cells and its impact on bacterial pathogenesis has remained elusive for Staphylococcus aureus, a major human pathogen. Here, we show that a mntC mutant, which lacks the functional manganese transporter MntABC, was more sensitive to killing by human neutrophils but not murine macrophages, unless the mntC mutant was pre-exposed to oxidative stress. Notably, the mntC mutant formed strikingly small colonies when recovered from both type of phagocytic cells. We show that this phenotype is a direct consequence of the inability of the mntC mutant to reinitiate growth after exposure to phagocytic oxidative burst. Transcript and quantitative proteomics analyses revealed that the manganese-dependent ribonucleotide reductase complex NrdEF, which is essential for DNA synthesis and repair, was highly induced in the mntC mutant under oxidative stress conditions including after phagocytosis. Since NrdEF proteins are essential for S. aureus viability we hypothesize that cells lacking MntABC might attempt to compensate for the impaired function of NrdEF by increasing their expression. Our data suggest that besides ROS detoxification, functional manganese acquisition is likely crucial for S. aureus pathogenesis by repairing oxidative damages, thereby ensuring efficient bacterial growth after phagocytic oxidative burst, which is an attribute critical for disseminating and establishing infection in the host.


Subject(s)
Bacterial Proteins/genetics , DNA Replication/genetics , Manganese/metabolism , Membrane Transport Proteins/genetics , Oxidative Stress/genetics , Respiratory Burst/genetics , Staphylococcus aureus/genetics , Animals , Gene Expression Regulation, Bacterial/genetics , Humans , Macrophages/microbiology , Mice , Neutrophils/microbiology , Phagocytosis/genetics , Proteomics/methods , Reactive Oxygen Species/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism
11.
Biochem J ; 466(1): 45-54, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25423073

ABSTRACT

Evasion of cell death is one crucial capability acquired by tumour cells to ward-off anti-tumour therapies and represents a fundamental challenge to sustaining clinical efficacy for currently available agents. Inhibitor of apoptosis (IAP) proteins use their ubiquitin E3 ligase activity to promote cancer cell survival by mediating proliferative signalling and blocking cell death in response to diverse stimuli. Using immunoaffinity enrichment and MS, ubiquitination sites on thousands of proteins were profiled upon initiation of cell death by IAP antagonists in IAP antagonist-sensitive and -resistant breast cancer cell lines. Our analyses identified hundreds of proteins with elevated levels of ubiquitin-remnant [K-GG (Lys-Gly-Gly)] peptides upon activation of cell death by the IAP antagonist BV6. The majority of these were observed in BV6-sensitive, but not-resistant, cells. Among these were known pro-apoptotic regulators, including CYC (cytochrome c), RIP1 (receptor-interacting protein 1) and a selection of proteins known to reside in the mitochondria or regulate NF-κB (nuclear factor κB) signalling. Analysis of early time-points revealed that IAP antagonist treatment stimulated rapid ubiquitination of NF-κB signalling proteins, including TRAF2 [TNF (tumour necrosis factor) receptor-associated factor 2], HOIL-1 (haem-oxidized iron-regulatory protein 2 ubiquitin ligase-1), NEMO (NF-κB essential modifier), as well as c-IAP1 (cellular IAP1) auto-ubiquitination. Knockdown of several NF-κB pathway members reduced BV6-induced cell death and TNF production in sensitive cell lines. Importantly, RIP1 was found to be constitutively ubiquitinated in sensitive breast-cancer cell lines at higher basal level than in resistant cell lines. Together, these data show the diverse and temporally defined roles of protein ubiquitination following IAP-antagonist treatment and provide critical insights into predictive diagnostics that may enhance clinical efficacy.


Subject(s)
Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Inhibitor of Apoptosis Proteins/genetics , Oligopeptides/pharmacology , Ubiquitin/genetics , Cell Line, Tumor , Cytochromes c/genetics , Cytochromes c/metabolism , Drug Resistance, Neoplasm/drug effects , Gene Expression Profiling , Humans , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Proteolysis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , Transcription Factors , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
12.
Nature ; 510(7505): 370-5, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24896179

ABSTRACT

Cells maintain healthy mitochondria by degrading damaged mitochondria through mitophagy; defective mitophagy is linked to Parkinson's disease. Here we report that USP30, a deubiquitinase localized to mitochondria, antagonizes mitophagy driven by the ubiquitin ligase parkin (also known as PARK2) and protein kinase PINK1, which are encoded by two genes associated with Parkinson's disease. Parkin ubiquitinates and tags damaged mitochondria for clearance. Overexpression of USP30 removes ubiquitin attached by parkin onto damaged mitochondria and blocks parkin's ability to drive mitophagy, whereas reducing USP30 activity enhances mitochondrial degradation in neurons. Global ubiquitination site profiling identified multiple mitochondrial substrates oppositely regulated by parkin and USP30. Knockdown of USP30 rescues the defective mitophagy caused by pathogenic mutations in parkin and improves mitochondrial integrity in parkin- or PINK1-deficient flies. Knockdown of USP30 in dopaminergic neurons protects flies against paraquat toxicity in vivo, ameliorating defects in dopamine levels, motor function and organismal survival. Thus USP30 inhibition is potentially beneficial for Parkinson's disease by promoting mitochondrial clearance and quality control.


Subject(s)
Mitochondrial Proteins/metabolism , Mitophagy/physiology , Thiolester Hydrolases/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line , Cells, Cultured , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Knockdown Techniques , HEK293 Cells , HeLa Cells , Humans , Male , Mitochondrial Proteins/genetics , Neurons/metabolism , Parkinson Disease/physiopathology , Protein Kinases/metabolism , Rats , Thiolester Hydrolases/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Ubiquitination
13.
Nature ; 509(7499): 240-4, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24695226

ABSTRACT

The detection of microbial pathogens involves the recognition of conserved microbial components by host cell sensors such as Toll-like receptors (TLRs) and NOD-like receptors (NLRs). TLRs are membrane receptors that survey the extracellular environment for microbial infections, whereas NLRs are cytosolic complexes that detect microbial products that reach the cytosol. Upon detection, both sensor classes trigger innate inflammatory responses and allow the engagement of adaptive immunity. Endo-lysosomes are the entry sites for a variety of pathogens, and therefore the sites at which the immune system first senses their presence. Pathogens internalized by endocytosis are well known to activate TLRs 3 and 7-9 that are localized to endocytic compartments and detect ligands present in the endosomal lumen. Internalized pathogens also activate sensors in the cytosol such as NOD1 and NOD2 (ref. 2), indicating that endosomes also provide for the translocation of bacterial components across the endosomal membrane. Despite the fact that NOD2 is well understood to have a key role in regulating innate immune responses and that mutations at the NOD2 locus are a common risk factor in inflammatory bowel disease and possibly other chronic inflammatory states, little is known about how its ligands escape from endosomes. Here we show that two endo-lysosomal peptide transporters, SLC15A3 and SLC15A4, are preferentially expressed by dendritic cells, especially after TLR stimulation. The transporters mediate the egress of bacterially derived components, such as the NOD2 cognate ligand muramyl dipeptide (MDP), and are selectively required for NOD2 responses to endosomally derived MDP. Enhanced expression of the transporters also generates endosomal membrane tubules characteristic of dendritic cells, which further enhanced the NOD2-dependent response to MDP. Finally, sensing required the recruitment of NOD2 and its effector kinase RIPK2 (refs 8, 9) to the endosomal membrane, possibly by forming a complex with SLC15A3 or SLC15A4. Thus, dendritic cell endosomes are specialized platforms for both the lumenal and cytosolic sensing of pathogens.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Endosomes/immunology , Endosomes/metabolism , Nod2 Signaling Adaptor Protein/immunology , Nod2 Signaling Adaptor Protein/metabolism , Salmonella typhimurium/immunology , Acetylmuramyl-Alanyl-Isoglutamine/immunology , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Animals , Carrier Proteins/metabolism , Cytoplasm/immunology , Cytoplasm/metabolism , Cytoplasm/microbiology , Dendritic Cells/cytology , Immunity, Innate , Inflammation , Inflammatory Bowel Diseases/genetics , Ligands , Lysosomes/metabolism , Membrane Transport Proteins/metabolism , Mice , Nerve Tissue Proteins/metabolism , Phagosomes/immunology , Phagosomes/metabolism
14.
J Infect Dis ; 209(10): 1533-41, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24280367

ABSTRACT

BACKGROUND: Detailed knowledge on protein repertoire of a pathogen during host infection is needed for both developing a better understanding of the pathogenesis and defining potential therapeutic targets. Such data, however, have been missing for Staphylococcus aureus, a major human pathogen. METHODS: We determined the surface proteome of methicillin-resistant S. aureus (MRSA) clone usa300 derived directly from murine systemic infectiON. RESULTS: The majority of the in vivo-expressed surface-associated proteins were lipoproteins involved in nutrient acquisition, especially uptake of metal ions. Enzyme-linked immunosorbent assay (ELISA) of convalescent human serum samples revealed that proteins that were highly produced during murine experimental infection were also produced during natural human infection. We found that among the 7 highly abundant lipoproteins only MntC, which is the manganese-binding protein of the MntABC system, was essential for MRSA virulence during murine systemic infection. Moreover, we show that MntA and MntB are equally important for MRSA virulence. CONCLUSIONS: Besides providing experimental evidence that MntABC might be a potential therapeutic target for the development of antibiotics, our in vivo proteomics data will serve as a valuable basis for defining potential antigen combinations for multicomponent vaccines.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/metabolism , Proteomics , Animals , Bacterial Proteins/genetics , Enzyme-Linked Immunosorbent Assay/methods , Humans , Kidney/microbiology , Lipoproteins/genetics , Lipoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Serum/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/prevention & control , Staphylococcal Vaccines/immunology , Virulence
15.
Proc Natl Acad Sci U S A ; 110(48): 19426-31, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24218548

ABSTRACT

Targeted therapeutics that block signal transduction through the RAS-RAF-MEK and PI3K-AKT-mTOR pathways offer significant promise for the treatment of human malignancies. Dual inhibition of MAP/ERK kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) with the potent and selective small-molecule inhibitors GDC-0973 and GDC-0941 has been shown to trigger tumor cell death in preclinical models. Here we have used phosphomotif antibodies and mass spectrometry (MS) to investigate the effects of MEK/PI3K dual inhibition during the period immediately preceding cell death. Upon treatment, melanoma cell lines responded by dramatically increasing phosphorylation on proteins containing a canonical DNA damage-response (DDR) motif, as defined by a phosphorylated serine or threonine residue adjacent to glutamine, [s/t]Q. In total, >2,000 [s/t]Q phosphorylation sites on >850 proteins were identified by LC-MS/MS, including an extensive network of DDR proteins. Linear mixed-effects modeling revealed 101 proteins in which [s/t]Q phosphorylation was altered significantly in response to GDC-0973/GDC-0941. Among the most dramatic changes, we observed rapid and sustained phosphorylation of sites within the ABCDE cluster of DNA-dependent protein kinase. Preincubation of cells with the inhibitors of the DDR kinases DNA-dependent protein kinase or ataxia-telangiectasia mutated enhanced GDC-0973/GDC-0941-mediated cell death. Network analysis revealed specific enrichment of proteins involved in RNA metabolism along with canonical DDR proteins and suggested a prominent role for this pathway in the response to MEK/PI3K dual inhibition.


Subject(s)
DNA Damage/physiology , Melanoma/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Phosphoproteins/metabolism , Azetidines/pharmacology , Blotting, Western , Cell Line, Tumor , Chromatography, Liquid , Humans , Indazoles/pharmacology , Linear Models , Phosphorylation/drug effects , Piperidines/pharmacology , Proteomics/methods , Signal Transduction , Sulfonamides/pharmacology , Tandem Mass Spectrometry/methods
16.
Science ; 337(6101): 1541-6, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22878500

ABSTRACT

De-ubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with increased risk of mesothelioma and uveal melanoma. Somatic BAP1 mutations occur in various malignancies. We show that mouse Bap1 gene deletion is lethal during embryogenesis, but systemic or hematopoietic-restricted deletion in adults recapitulates features of human myelodysplastic syndrome (MDS). Knockin mice expressing BAP1 with a 3xFlag tag revealed that BAP1 interacts with host cell factor-1 (HCF-1), O-linked N-acetylglucosamine transferase (OGT), and the polycomb group proteins ASXL1 and ASXL2 in vivo. OGT and HCF-1 levels were decreased by Bap1 deletion, indicating a critical role for BAP1 in stabilizing these epigenetic regulators. Human ASXL1 is mutated frequently in chronic myelomonocytic leukemia (CMML) so an ASXL/BAP1 complex may suppress CMML. A BAP1 catalytic mutation found in a MDS patient implies that BAP1 loss of function has similar consequences in mice and humans.


Subject(s)
Cell Transformation, Neoplastic , Genes, Tumor Suppressor , Leukemia, Myelomonocytic, Chronic/genetics , Myelodysplastic Syndromes/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Animals , Bone Marrow Transplantation , Chromatin Immunoprecipitation , Embryonic Development , Gene Deletion , Gene Expression Regulation , Gene Knock-In Techniques , Hematopoiesis , Host Cell Factor C1/metabolism , Humans , Leukemia, Myelomonocytic, Chronic/metabolism , Leukemia, Myelomonocytic, Chronic/pathology , Mice , Mice, Knockout , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Myeloid Cells/cytology , Myeloid Cells/physiology , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/physiology , N-Acetylglucosaminyltransferases/metabolism , Promoter Regions, Genetic , Repressor Proteins/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism
17.
Mol Cell Proteomics ; 11(12): 1529-40, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22729469

ABSTRACT

Advances in high resolution tandem mass spectrometry and peptide enrichment technologies have transformed the field of protein biochemistry by enabling analysis of end points that have traditionally been inaccessible to molecular and biochemical techniques. One field benefitting from this research has been the study of ubiquitin, a 76-amino acid protein that functions as a covalent modifier of other proteins. Seminal work performed decades ago revealed that trypsin digestion of a branched protein structure known as A24 yielded an enigmatic diglycine signature bound to a lysine residue in histone 2A. With the onset of mass spectrometry proteomics, identification of K-GG-modified peptides has emerged as an effective way to map the position of ubiquitin modifications on a protein of interest and to quantify the extent of substrate ubiquitination. The initial identification of K-GG peptides by mass spectrometry initiated a flurry of work aimed at enriching these post-translationally modified peptides for identification and quantification en masse. Recently, immunoaffinity reagents have been reported that are capable of capturing K-GG peptides from ubiquitin and its thousands of cellular substrates. Here we focus on the history of K-GG peptides, their identification by mass spectrometry, and the utility of immunoaffinity reagents for studying the mechanisms of cellular regulation by ubiquitin.


Subject(s)
Peptides/chemistry , Peptides/metabolism , Proteins/chemistry , Proteins/metabolism , Ubiquitination , Glycylglycine/chemistry , Proteomics/methods , Tandem Mass Spectrometry , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitinated Proteins
18.
J Proteome Res ; 11(5): 2947-54, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22432722

ABSTRACT

Proteolysis is a key regulatory event that controls intracellular and extracellular signaling through irreversible changes in a protein's structure that greatly alters its function. Here we describe a platform for profiling caspase substrates which encompasses two highly complementary proteomic techniques--the first is a differential gel based approach termed Global Analyzer of SILAC-derived Substrates of Proteolysis (GASSP) and the second involves affinity enrichment of peptides containing a C-terminal aspartic acid residue. In combination, these techniques have enabled the profiling of a large cellular pool of apoptotic-mediated proteolytic events across a wide dynamic range. By applying this integrated proteomic work flow to analyze proteolytic events resulting from the induction of intrinsic apoptosis in Jurkat cells via etoposide treatment, 3346 proteins were quantified, of which 360 proteins were identified as etoposide-induced proteolytic substrates, including 160 previously assigned caspase substrates. In addition to global profiling, a targeted approach using BAX HCT116 isogenic cell lines was utilized to dissect pre- and post-mitochondrial extrinsic apoptotic cleavage events. By employing apoptotic activation with a pro-apoptotic receptor agonist (PARA), a limited set of apoptotic substrates including known caspase substrates such as BH3 interacting-domain death agonist (BID) and Poly (ADP-ribose) polymerase (PARP)-1, and novel substrates such as Basic Transcription Factor 3, TRK-fused gene protein (TFG), and p62/Sequestosome were also identified.


Subject(s)
Apoptosis/drug effects , Proteolysis , Proteomics/methods , Adaptor Proteins, Signal Transducing/chemistry , Aspartic Acid/chemistry , BH3 Interacting Domain Death Agonist Protein/chemistry , Caspases/chemistry , Computational Biology , Etoposide/pharmacology , HCT116 Cells , Humans , Jurkat Cells , Nuclear Proteins/chemistry , Peptides/chemistry , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/chemistry , Proteins/chemistry , RNA-Binding Proteins/chemistry , Sequestosome-1 Protein , Substrate Specificity , Transcription Factors/chemistry
19.
Mol Cell Proteomics ; 10(5): M110.003756, 2011 May.
Article in English | MEDLINE | ID: mdl-21048196

ABSTRACT

Ubiquitinated substrates can be recruited to macromolecular complexes through interactions between their covalently bound ubiquitin (Ub) signals and Ub receptor proteins. To develop a functional understanding of the Ub system in vivo, methods are needed to determine the composition of Ub signals on individual substrates and in protein mixtures. Mass spectrometry has emerged as an important tool for characterizing the various forms of Ub. In the Ubiquitin-AQUA approach, synthetic isotopically labeled internal standard peptides are used to quantify unbranched peptides and the branched -GG signature peptides generated by trypsin digestion of Ub signals. Here we have built upon existing methods and established a comprehensive platform for the characterization of Ub signals. Digested peptides and isotopically labeled standards are analyzed either by selected reaction monitoring on a QTRAP mass spectrometer or by narrow window extracted ion chromatograms on a high resolution LTQ-Orbitrap. Additional peptides are now monitored to account for the N terminus of ubiquitin, linear polyUb chains, the peptides surrounding K33 and K48, and incomplete digestion products. Using this expanded battery of peptides, the total amount of Ub in a sample can be determined from multiple loci within the protein, minimizing possible confounding effects of complex Ub signals, digestion abnormalities, or use of mutant Ub in experiments. These methods have been useful for the characterization of in vitro, multistage ubiquitination and have now been extended to reactions catalyzed by multiple E2 enzymes. One question arising from in vitro studies is whether individual protein substrates in cells may be modified by multiple forms of polyUb. Here we have taken advantage of recently developed polyubiquitin linkage-specific antibodies recognizing K48- and K63-linked polyUb chains, coupled with these mass spectrometry methods, to further evaluate the abundance of mixed linkage Ub substrates in cultured mammalian cells. By combining these two powerful tools, we show that polyubiquitinated substrates purified from cells can be modified by mixtures of K48, K63, and K11 linkages.


Subject(s)
Mutant Proteins/chemistry , Ubiquitin/chemistry , Ubiquitinated Proteins/metabolism , Amino Acid Sequence , HEK293 Cells , Humans , Immunoprecipitation , Jurkat Cells , Leupeptins/pharmacology , Lysine/chemistry , Methionine/chemistry , Molecular Sequence Data , Oxidation-Reduction , Peptide Fragments/chemistry , Proteasome Inhibitors , Tandem Mass Spectrometry , Ubiquitinated Proteins/chemistry , Ubiquitination
20.
J Proteome Res ; 7(11): 4756-65, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18798661

ABSTRACT

Recently, mass spectrometry has been employed in many studies to provide unbiased, reproducible, and quantitative protein abundance information on a proteome-wide scale. However, how instruments' limited dynamic ranges impact the accuracy of such measurements has remained largely unexplored, especially in the context of complex mixtures. Here, we examined the distribution of peptide signal versus background noise (S/N) and its correlation with quantitative accuracy. With the use of metabolically labeled Jurkat cell lysate, over half of all confidently identified peptides had S/N ratios less than 10 when examined using both hybrid linear ion trap-Fourier transform ion cyclotron resonance and Orbitrap mass spectrometers. Quantification accuracy was also highly correlated with S/N. We developed a mass precision algorithm that significantly reduced measurement variance at low S/N beyond the use of highly accurate mass information alone and expanded it into a new software suite, Vista. We also evaluated the interplay between mass measurement accuracy and S/N; finding a balance between both parameters produced the greatest identification and quantification rates. Finally, we demonstrate that S/N can be a useful surrogate for relative abundance ratios when only a single species is detected.


Subject(s)
Mass Spectrometry/methods , Peptides/analysis , Proteome/analysis , Proteomics/methods , Algorithms , Complex Mixtures/analysis , Complex Mixtures/chemistry , Cyclotrons , Fourier Analysis , Humans , Isotope Labeling , Isotopes/analysis , Jurkat Cells , Peptides/chemistry , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...