Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Foods ; 12(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37297477

ABSTRACT

The peel and core discarded from the processing of MD2 pineapple have the potential to be valorized. This study evaluated the functional and volatile compounds in the extracts of MD pineapple peel and core (MD2-PPC). The total soluble solids, pH, titratable acidity, sweetness index, and astringency index were 9.34 °Brix, 4.00, 0.74%, 12.84, and 0.08, respectively, for the peel and 12.00 °Brix, 3.96, 0.32%, 37.66, and 0.03, respectively, for the core. The fat and protein contents of the peel and core were found to be significantly different (p < 0.05). The total phenolic (TPC) and flavonoid contents (TFC) were significantly higher in the peel. The peel also showed better antioxidant activity, with a half-maximal inhibitory concentration (IC50) of 0.63 mg/mL for DPPH free radical activity compared with the core. The TPC of different phenolic fractions from peel extract was highest in the glycosylated fraction, followed by the esterified, insoluble-bound, and free phenolic fractions. GC-MS analysis identified 38 compounds in the peel and 23 in the core. The primary volatile compounds were 2-furan carboxaldehyde, 5-(hydroxymethyl), and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). The identification of phenolics and volatile compounds provides important insights into the valorization of (MD2-PPC) waste.

2.
Foods ; 12(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37174425

ABSTRACT

Texture is an important sensory attribute for overall quality and consumer acceptance of prawns. However, texture is affected during cold storage due to the proteolytic activity of endogenous proteases, resulting in poor quality and a short shelf life. The objective of this study is to determine the inhibitory effects of Annona muricata leaves extract (AMLE) (0, 3, 10 and 20%) on the trypsin, cathepsin B and collagenase activities extracted from the cephalothorax of Macrobrachium rosenbergii. In addition, the textural changes in M. rosenbergii during 20 days of cold storage (4 °C) were also determined. M. rosenbergii were soaked in four different treatments: 0, 3, 10 and 20% AMLE and 1.25% sodium metabisulphate for 10 min at 4 °C. Protease activity was significantly (p < 0.05) reduced at 10 and 20% AMLE. Similarly, cathepsin B showed a significant (p < 0.05) low after treatment at 20% AMLE. The maximum inhibitory activity of trypsin was achieved at 20% AMLE and the standard inhibitor (Tosyl-L-lysyl-chloromethane hydrochloride (TLCK)) compared to the control. Whereas, the lowest collagenase activity was obtained at 20% AMLE compared to the control. These inhibitory effects further maintain the firmness of M. rosenbergii coated with 20% AMLE up to the eighth day of storage when compared to the control. Meanwhile, the highest penetration work was found in the M. rosenbergii coated with 20% AMLE at the twentieth day of storage. In conclusion, treatment at 20% AMLE could be used as a natural preservative to inhibit protease, trypsin and collagenase activity of M. rosenbergii and thus can maintain firmness for up to 8 days of storage.

3.
Gels ; 9(1)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36661816

ABSTRACT

The application of emulsion gels as animal fat replacers in meat products has been focused on due to their unique physicochemical properties. The electrostatic interaction between proteins and polysaccharides could influence emulsion gel stability. This study aimed to evaluate the physicochemical properties of emulsion gels using starch and gelatin as stabilizers, promoting electrostatic attraction via pH adjustment. Three systems were studied: emulsion gel A (EGA) and emulsion gel B (EGB), which have positive and negative net charges that promote electrostatic interaction, and emulsion gel C (EGC), whose charge equals the isoelectric point and does not promote electrostatic interactions. There was no significant difference in proximate analysis, syneresis and thermal stability between samples, while EGA and EGB had higher pH values than EGC. The lightness (L*) value was higher in EGA and EGB, while the yellowness (b*) value was the highest in EGC. The smaller particle size (p < 0.05) in EGA and EGB also resulted in higher gel strength, hardness and oxidative stability. Microscopic images showed that EGA and EGB had a more uniform matrix structure. X-ray diffraction demonstrated that all the emulsion gels crystallized in a ß' polymorph form. Differential scanning calorimetry (DSC) revealed a single characteristic peak was detected in both the melting and cooling curves for all the emulsion gels, which indicated that the fat exists in a single polymorphic state. All emulsion gels presented a high amount of unsaturated fatty acids and reduced saturated fat by up to 11%. Therefore, the emulsion gels (EGA and EGB) that favored the electrostatic protein-polysaccharide interactions are suitable to be used as fat replacers in meat products.

4.
Compr Rev Food Sci Food Saf ; 21(4): 3153-3176, 2022 07.
Article in English | MEDLINE | ID: mdl-35638329

ABSTRACT

Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.


Subject(s)
Food , Gelatin , Animals , Cattle , Gelatin/analysis , Gelatin/chemistry , Mammals , Swine , Viscosity
5.
J Food Sci Technol ; 59(3): 859-868, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35153318

ABSTRACT

Giant freshwater prawn (Macrobrachium rosenbergii) is one of the important aquaculture species and quickly expanding in many countries. High demand and mass commercialization on M. rosenbergii regulating 18% of the international seafood business. Seafood products contend with various level across the supply chains and time to reach the consumers depending upon the marketing and delivery channels after harvesting. Therefore, these may cause biodeterioration such as melanosis (dark pigmentation) and microbial changes that limit the shelf life. This studies reveal the antioxidant properties from Annona muricata leaves extract and their effectiveness in inhibiting the polyphenoloxidase (PPO) activity and delaying the bacterial accumulation during 20 days of chilled storage. Five metabolites including coumarins, flavonoid, glycoside, terpenoids and steroid compound were found in A. muricata leaves extract. Total phenolic content and total flavonoid content of A. muricata were recorded at 191.24 ± 0.03 mgGAEg-1 and 1777.48 ± 1.08 mgQEg-1, respectively. Sixteen percent (16%) of A. muricata leaf extract effectively inhibit 82.41% PPO. Furthermore, 15% of A. muricata leaves extracts showed a significant reduced (p < 0.05) in total bacteria count during 20 days of chilled storage of M. rosenbergii. These conclude that the present of listed secondary metabolites and at approximately ~ 15-16% of A. muricata leaves extracts were effectively inhibiting the melanosis and prolong the shelf life for up to 8 days of M. rosenbergii stored at chilled condition. Therefore, A. muricata leaves extract is potential used as natural preservative agent in obtaining high quality seafood products.

6.
Food Control ; 127: 108140, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33867696

ABSTRACT

The recent COVID-19, a viral outbreak calls for a high demand for non-conventional antiviral agents that can reduce the risk of infections and promote fast recovery. Fermented foods and their probiotics bacteria have recently received increasing interest due to the reported potential of high antiviral activity. Several probiotics strains demonstrated broad range of antiviral activities and different mechanisms of action. This article will review the diversity, health benefits, interaction with immune system and antiviral activity of fermented foods and their probiotics bacteria. In addition, the mechanisms of action will be reviewed to determine the broad range potential antiviral activity against the respiratory and alimentary tracts viruses. The probiotics bacteria and bioactive compounds in fermented foods demonstrated antiviral activities against respiratory and alimentary tracts viruses. The mechanism of action was reported to be due to the stimulation of the immune system function via enhancing natural killers cell toxicity, enhance the production of pro-inflammatory cytokines, and increasing the cytotoxic of T lymphocytes (CD3+, CD16+, CD56+). However, further studies are highly recommended to determine the potential antiviral activity for traditional fermented foods.

7.
J Nutr Sci Vitaminol (Tokyo) ; 66(Supplement): S179-S183, 2020.
Article in English | MEDLINE | ID: mdl-33612590

ABSTRACT

Vitamin A deficiency is common in many countries where rice is the staple food. Food fortification is an important strategy to address this problem. As rice noodle is the second principal form of rice products widely consumed in Asia, rice noodles could be a potential vehicle for fortification of vitamin A. In this study, rice noodles were prepared from 0, 300, 600, 1,050, and 1,500 µg of vitamin A per 100 g of rice flour. Samples were analyzed for quality, sensory evaluation, and enhancement of vitamin A intakes. Increasing level of vitamin A fortification did not influence quality and sensory properties of the rice noodles, except for the ash content, color, and appearance of the noodles. Rice noodle that was fortified with the highest level of vitamin A was found to be the darkest in color. However, this sample received scores higher than 6 (like slightly) for appearance. Furthermore, sample fortified with the highest level of vitamin A produced rice noodles with the highest level of vitamin A retention suggesting that noodles were good vehicle for vitamin A fortification. Fortification of rice flour with 1,500 µg of vitamin A produced rice noodles with 24.88% of the RDI for vitamin A per serving and provided an effective means of enhancing vitamin A intake.


Subject(s)
Oryza , Flour/analysis , Food, Fortified/analysis , Nutritional Status , Vitamin A
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 173: 335-342, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27685001

ABSTRACT

Short wave near infrared spectroscopy (NIR) method was used to detect the presence of lard adulteration in palm oil. MicroNIR was set up in two different scan modes to study the effect of path length to the performance of spectral measurement. Pure and adulterated palm oil sample were classified using soft independent modeling class analogy (SIMCA) algorithm with model accuracy more than 0.95 reported for both transflectance and transmission modes. Additionally, by employing partial least square (PLS) regression, the coefficient of determination (R2) of transflectance and transmission were 0.9987 and 0.9994 with root mean square error of calibration (RMSEC) of 0.5931 and 0.6703 respectively. In order to remove the uninformative variables, variable selection using cumulative adaptive reweighted sampling (CARS) has been performed. The result of R2 and RMSEC after variable selection for transflectance and transmission were improved significantly. Based on the result of classification and quantification analysis, the transmission mode has yield better prediction model compared to the transflectance mode to distinguish the pure and adulterated palm oil.


Subject(s)
Food Contamination/analysis , Palm Oil/analysis , Palm Oil/chemistry , Spectroscopy, Near-Infrared/methods , Algorithms , Calibration , Dietary Fats/analysis , Least-Squares Analysis , Signal Processing, Computer-Assisted , Spectroscopy, Near-Infrared/instrumentation
9.
Food Chem ; 216: 10-8, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27596386

ABSTRACT

Chili shrimp paste (CSP) is an exotic traditional Southeast Asian condiment prepared using mainly fresh chilies and fermented shrimp paste (belacan) which attributed to strong pungent fishy odor. This study aims to evaluate the effectiveness of electron beam irradiation (EBI) exposure on CSP for microorganisms decontamination, and its physicochemical qualities changes. Changes in capsaicinoid contents and volatile compounds were analyzed using HPLC and GC-MS. Mesophilic bacteria, yeast, mold and pathogenic Enterobacteriaceae decreased as irradiation dose increasing from 0 to 10kGy. EBI at 10kGy effectively decontaminated the samples with no significant effects on phenolic and capsaicinoids contents compared to the fresh samples. From 24 compounds, irradiated CSP retained 23 volatile compounds, while thermally treated CSP has only 19 compounds. EBI at 10kGy is effective for decontamination in CSP with lesser destructive effect on volatile compounds and texture compared to thermal treatment.


Subject(s)
Chemical Phenomena , Food Handling , Food Irradiation , Seafood/analysis , Volatile Organic Compounds/analysis , Animals , Capsaicin/analysis , Crustacea , Dose-Response Relationship, Radiation , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/radiation effects , Fermentation , Food Contamination/prevention & control , Food Microbiology , Gas Chromatography-Mass Spectrometry , Hot Temperature , Phenols/analysis , Seafood/microbiology , Shellfish
10.
J Food Sci Technol ; 52(9): 5534-45, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26344967

ABSTRACT

In the current study, effects of fermentation on physicochemical and functional properties of brown rice flour (BRF) were investigated. Fermentation conditions were optimized using response surface methodology to achieve moderate acidity (pH 5-6), specifically pH 5.5 of brown rice batter with time, temperature and yeast concentration as the independent variables. The results indicated that brown rice batter was well fermented to maintain pH 5.5 at optimum conditions of 32 °C for 6.26 h using 1 % yeast concentration. Fermentation at moderate acidity significantly increased the levels of protein, total ash, insoluble fiber, soluble fibre, minerals, phenolics, antioxidants, resistant starch, riboflavin, pyridoxine, nicotinic acid, γ-tocotrienol, and δ-tocotrienol. However, it reduced the contents of γ-oryzanol, γ-tocopherol, α-tocopherol, phytic acid, amylose and total starch. Foaming capacity, foaming stability, oil holding capacity, gelatinization temperatures, enthalpy and whiteness of BRF were increased after fermentation. In contrast, its swelling power, water solubility index, hot paste viscosity, breakdown, and setback significantly decreased. Microstructure of BRF was also influenced, where its starch granules released from its enclosed structure after fermentation. This investigation shows evidence that yeast fermentation modified the functionality of BRF and can be used as a functional food ingredient.

11.
Molecules ; 19(8): 12336-48, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25153861

ABSTRACT

Extraction of protease from a local ginger rhizome (Zingiber officinale var. Bentong) was carried out. The effect of extraction pH (6.4, 6.8, 7.0, 7.2, 7.6, 8.0, 8.4, and 8.8) and stabilizers (0.2% ascorbic acid, 0.2% ascorbic acid and 5 mM EDTA, or 10 mM cysteine and 5 mM EDTA) on protease activity during extraction was examined. pH 7.0 potassium phosphate buffer and 10 mM cysteine in combination with 5 mM EDTA as stabilizer were found to be the most effective conditions. The extraction procedure yielded 0.73% of Bentong ginger protease (BGP) with a specific activity of 24.8±0.2 U/mg protein. Inhibitory tests with some protease inhibitors classified the enzyme as a cysteine protease. The protease showed optimum activity at 60 °C and pH 6-8, respectively. The enzyme was completely inhibited by heavy metal cations such as Cu2+, and Hg2+. SDS stimulated the activity of enzyme, while emulsifiers (Tween 80 and Tween 20) slightly reduced its activity. The kinetic analysis showed that the protease has Km and Vmax values of 0.21 mg mL-1 and 34.48 mg mL-1 min-1, respectively. The dried enzyme retained its activity for 22 months when stored at -20 °C.


Subject(s)
Cysteine Proteases/chemistry , Plant Proteins/chemistry , Rhizome/enzymology , Zingiber officinale/enzymology , Cysteine Proteases/isolation & purification , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Mercury/chemistry , Plant Proteins/isolation & purification , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry , Zinc/chemistry
12.
J Food Sci Technol ; 51(6): 1118-25, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24876644

ABSTRACT

Biogenic amines formation in Indian mackerel of tropical region was investigated during storage at ambient (25-29 °C) and ice temperature (0 °C) in relation with changes of amino acids content and amines forming bacteria. All amines increased significantly during storage at two temperatures except for spermidine and spermine. Histamine concentration of 363.5 ppm was detected after 16 h stored at ambient temperature. Aerobic plate count of fish stored at ambient temperature reached 6.98 log CFU g(-1) after 16 h, close to the upper limit (7 log CFU g(-1)) suggested by International Commission on the Microbiological Specifications for Foods (ICMSF). However, proper icing procedure retarded the formation of histamine effectively, resulting only 8.31 ppm after 16 days of ice storage. Aerobic plate count of 5.99 and 7.72 log CFU g(-1) were recorded for fish stored in ice after 16 days and ambient temperature after 20 h, respectively. Histamine exhibited high correlation with histidine (r(2) = -0.963, P < 0.01) as well as cadaverine with lysine (r(2) = -0.750, P < 0.05). However, tyramine-tyrosine demonstrated a weaker relationship (r(2) = -0.138, P > 0.05). As storage time progressed, the amines forming bacteria grew significantly except for that stored in ice.

13.
Food Funct ; 5(5): 1007-16, 2014 May.
Article in English | MEDLINE | ID: mdl-24658538

ABSTRACT

Hypertension is one of the major causes of cardiovascular-related diseases, which is highly associated with angiotensin-I-converting enzyme (ACE) activity and oxidative stress. In this study, winged bean seed (WBS), a potential source of protein, was utilised for the production of bifunctional proteolysate and biopeptides with ACE inhibitory and antioxidative properties. An enzymatic approach was applied, coupled with pretreatment of shaking and centrifuging techniques to remove endogenous ACE inhibitors prior to proteolysis. ACE inhibition reached its highest activity, 78.5%, after 12 h proteolysis while antioxidative activities, determined using assays involving DPPH˙ radical scavenging activity and metal ion-chelating activity, reached peaks of 65.0% and 65.7% at 8 h and 14 h, respectively. The said bioactivities were proposed to share some common structural requirements among peptides. A two-dimensional approach was employed for characterisation of effective peptides based on hydrophobicity, using RP-HPLC, and isoelectric property, using isoelectric focusing technique. Results revealed that acidic and basic peptides with partially higher hydrophobicity provided higher ACE inhibition activity than did neutral peptides. Finally, by using Q-TOF mass spectrometry, two peptide sequences (YPNQKV and FDIRA) with ACE inhibitory and antioxidative activities were successfully matched with a database. This study indicates that the WBS proteolysate can be a potential bifunctional food ingredient as the identified biopeptides demonstrated both ACE inhibitory and antioxidative activities in vitro.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Antihypertensive Agents/chemistry , Fabaceae/chemistry , Plant Proteins/chemistry , Seeds/chemistry , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Antihypertensive Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Hydrolysis , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Plant Proteins/isolation & purification , Protein Hydrolysates/chemistry , Protein Hydrolysates/isolation & purification
14.
J Food Sci ; 79(2): E178-83, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24410375

ABSTRACT

To improve textural attributes of puffed corn-fish snack, the effects of 1%, 1.5%, and 2% of calcium carbonate, magnesium silicate (talc), sodium bicarbonate as well as 5% and 10% of wheat bran (as the nucleating materials) on textural attributes were studied. Sensory evaluation, bulk density, expansion ratio, maximum force, and count peaks were measured using the Kramer test. The results showed that all of the additives except bran significantly enhanced the texture. Among them, talc at 0.5% was the best to enhance the density and expansion ratio. Effects of using 0.5% talc on puffed corn-fish snack microstructure were studied using scanning electron microscopy. The average cell diameter of 109 ± 48 µm and cell numbers per square centimeter of 67.4 for talc-treated products were obtained, while for nontalc-treated extrudates, average cell diameter of 798 ± 361 µm and cell numbers per square centimeter of 13.9 were found. Incorporation of 0.5% w/w of magnesium silicate reduced (7-fold) the average cell diameter while increased (4-fold) the cell number.


Subject(s)
Fast Foods/analysis , Fish Products/analysis , Seeds/chemistry , Snacks , Talc/chemistry , Zea mays/chemistry , Animals , Calcium Carbonate/chemistry , Carps , Chemical Phenomena , Consumer Behavior , Dietary Fiber/analysis , Food Additives/chemistry , Food Preferences , Humans , Magnesium Silicates/chemistry , Malaysia , Mechanical Phenomena , Microscopy, Electron, Scanning , Sensation , Sodium Bicarbonate/chemistry , Triticum/chemistry
15.
Foods ; 3(1): 149-159, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-28234309

ABSTRACT

As fermentation could reduce the negative effects of bran on final cereal products, the utilization of whole-cereal flour is recommended, such as brown rice flour as a functional food ingredient. Therefore, this study aimed to investigate the effect of fermented brown rice flour on white rice flour, white rice batter and its steamed bread qualities. Brown rice batter was fermented using commercial baker's yeast (Eagle brand) according to the optimum conditions for moderate acidity (pH 5.5) to obtain fermented brown rice flour (FBRF). The FBRF was added to white rice flour at 0%, 10%, 20%, 30%, 40% and 50% levels to prepare steamed rice bread. Based on the sensory evaluation test, steamed rice bread containing 40% FBRF had the highest overall acceptability score. Thus, pasting properties of the composite rice flour, rheological properties of its batter, volume and texture properties of its steamed bread were determined. The results showed that peak viscosity of the rice flour containing 40% FBRF was significantly increased, whereas its breakdown, final viscosity and setback significantly decreased. Viscous, elastic and complex moduli of the batter having 40% FBRF were also significantly reduced. However, volume, specific volume, chewiness, resilience and cohesiveness of its steamed bread were significantly increased, while hardness and springiness significantly reduced in comparison to the control. These results established the effectiveness of yeast fermentation in reducing the detrimental effects of bran on the sensory properties of steamed white rice bread and encourage the usage of brown rice flour to enhance the quality of rice products.

16.
Article in English | MEDLINE | ID: mdl-22927875

ABSTRACT

Stichopus horrens flesh was explored as a potential source for generating peptides with angiotensin-converting enzyme (ACE) inhibitory capacity using 6 proteases, namely alcalase, flavourzyme, trypsin, papain, bromelain, and protamex. Degree of hydrolysis (DH) and peptide profiling (SDS-PAGE) of Stichopus horrens hydrolysates (SHHs) was also assessed. Alcalase hydrolysate showed the highest DH value (39.8%) followed by flavourzyme hydrolysate (32.7%). Overall, alcalase hydrolysate exhibited the highest ACE inhibitory activity (IC(50) value of 0.41 mg/mL) followed by flavourzyme hydrolysate (IC(50) value of 2.24 mg/mL), trypsin hydrolysate (IC(50) value of 2.28 mg/mL), papain hydrolysate (IC(50) value of 2.48 mg/mL), bromelain hydrolysate (IC(50) value of 4.21 mg/mL), and protamex hydrolysate (IC(50) value of 6.38 mg/mL). The SDS-PAGE results showed that alcalase hydrolysate represented a unique pattern compared to others, which yielded potent ACE inhibitory peptides with molecular weight distribution lower than 20 kDa. The evaluation of the relationship between DH and IC(50) values of alcalase and flavourzyme hydrolysates revealed that the trend between those parameters was related to the type of the protease used. We concluded that the tested SHHs would be used as a potential source of functional ACE inhibitory peptides for physiological benefits.

17.
Int J Food Microbiol ; 145(1): 84-91, 2011 Jan 31.
Article in English | MEDLINE | ID: mdl-21183239

ABSTRACT

Bacteria with amine oxidase activity have become a particular interest to reduce biogenic amines concentration in food products such as meat and fish sausages. However, little information is available regarding the application of these bacteria in fish sauce. Hence, our study was aimed to investigate the effect of such starter cultures in reducing biogenic amines accumulation during fish sauce fermentation. Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05 isolated from fish sauce which possess amine oxidase activity were used as starter cultures in this study. Fermentation was held for 120 days at 35 °C. The pH value increased in all samples, while salt concentration remained constant throughout fermentation. Aerobic bacteria count was significantly lower (p < 0.05) in the control than in inoculated samples as a result of starter cultures addition. However, it decreased during fermentation due to the growth inhibition by high salt concentration. Proteolytic bacterial count decreased during fermentation with no significant difference (p > 0.05) among samples. These bacteria hydrolyzed protein in anchovy to produce free amino acid precursors for amines formation by decarboxylase bacteria. The presence of biogenic amines producing bacteria in this study was considered to be indigenous from raw material or contamination during fermentation, since our cultures were negative histamine producers. Amino acid histidine, arginine, lysine and tyrosine concentration decreased at different rates during fermentation as they were converted into their respective amines. In general, biogenic amines concentration namely histamine, putrescine, cadaverine and tyramine increased throughout fermentation. However, their concentrations were markedly higher (p < 0.05) in the control (without starter cultures) as compared to the samples treated with starter cultures. Histamine concentration was reduced by 27.7% and 15.4% by Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05, respectively. Both cultures could also reduce other amines during fermentation. After 120 days of fermentation, the overall biogenic amines concentration was 15.9% and 12.5% less in samples inoculated with Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05, respectively, as compared to control samples. These findings emphasized that application of starter cultures with amines oxidase activity in fish sauce fermentation was found to be effective in reducing biogenic amines accumulation.


Subject(s)
Biogenic Amines/metabolism , Fermentation , Fish Products/microbiology , Food Microbiology , Amino Acids/metabolism , Bacillus/growth & development , Bacillus/metabolism , Bacterial Load , Histamine/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Sodium Chloride/analysis , Staphylococcus/growth & development , Staphylococcus/metabolism
18.
J Food Prot ; 69(8): 1913-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16924917

ABSTRACT

Oxalic acid was evaluated as a treatment for reducing populations of naturally occurring microorganisms on raw chicken. Raw chicken breasts were dipped in solutions of oxalic acid (0, 0.5, 1.0, 1.5, and 2.0%, wt/vol) for 10, 20, and 30 min, individually packed in oxygen-permeable polyethylene bags, and stored at 4 degrees C. Total plate counts of aerobic bacteria and populations of Pseudomonas spp. and Enterobacteriaceae on breasts were determined before treatment and after storage for 1, 3, 7, 10, and 14 days. The pH and Hunter L, a, and b values of the breast surface were measured. Total plate counts were ca. 1.5 and 4.0 log CFU/g higher on untreated chicken breasts after storage for 7 and 14 days, respectively, than on breasts treated with 0.5% oxalic acid, regardless of dip time. Differences in counts on chicken breasts treated with water and 1.0 to 2.0% of oxalic acid were greater. Populations of Pseudomonas spp. on chicken breasts treated with 0.5 to 2.0% oxalic acid and stored at 4 degrees C for 1 day were less than 2 log CFU/g (detection limit), compared with 5.14 log CFU/g on untreated breasts. Pseudomonas grew on chicken breasts treated with 0.5% oxalic acid to reach counts not exceeding 3.88 log CFU/g after storage for 14 days. Counts on untreated chicken exceeded 8.83 log CFU/g at 14 days. Treatment with oxalic acid caused similar reductions in Enterobacteriaceae counts. Kocuria rhizophila was the predominant bacterium isolated from treated chicken. Other common bacteria included Escherichia coli and Empedobacter brevis. Treatment with oxalic acid caused a slight darkening in color (decreased Hunter L value), retention of redness (increased Hunter a value), and increase in yellowness (increased Hunter b value). Oxalic acid has potential for use as a sanitizer to reduce populations of spoilage microorganisms naturally occurring on raw chicken, thereby extending chicken shelf life.


Subject(s)
Chickens/microbiology , Enterobacteriaceae/drug effects , Food Handling/methods , Oxalic Acid/pharmacology , Pseudomonas/drug effects , Reducing Agents/pharmacology , Animals , Colony Count, Microbial , Dose-Response Relationship, Drug , Enterobacteriaceae/growth & development , Food Microbiology , Food Preservation/methods , Hydrogen-Ion Concentration , Immersion , Pseudomonas/growth & development , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...