Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 146(3): EL212, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31590509

ABSTRACT

Plasma filaments in air induced by femtosecond laser pulses lead to the generation of strong shock waves. This letter presents a systematic study, both experimental and theoretical, of the acoustic radiation by femtosecond laser-generated filaments. A theoretical model is developed based on the experimental results and is used to evaluate the directivity of the filament's acoustic radiation within and beyond the audible frequency range. It is shown that the acoustic directivity of plasma filaments can be derived from the model of a weighted acoustic line source, consisting of elementary point sources with N-shaped excitation.

2.
Opt Express ; 23(13): 17191-204, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26191728

ABSTRACT

The role of thin-film metal transducers in ultrafast laser-generated longitudinal acoustic phonons in Si (100) monocrystal substrates is investigated. For this purpose degenerate femtosecond pump-probe transient reflectivity measurements are performed probing the Brillouin scattering of laser photons from phonons. The influence of the metallic electron-phonon coupling factor, acoustical impedance and film thickness is examined. An optical transfer matrix method for thin films is applied to extract the net acoustic strain relative strength for the various transducer cases, taking into account the experimental probing efficiency. In addition, a theoretical thermo-mechanical approach based on the combination of a revised two-temperature model and elasticity theory is applied and supports the experimental findings. The results show highly efficient generation of acoustic phonons in Si when Ti transducers are used. This demonstrates the crucial role of the transducer's high electron-phonon coupling constant and high compressive yield strength, as well as strong acoustical impedance matching with the semiconductor substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...