Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(10): 1317-1320, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36637039

ABSTRACT

The molecular-level role of alkoxide salts, used as alternative additive to N-methylpyrrolidone in iron-catalyzed alkyl-alkenyl/aryl cross-coupling reactions, is investigated. Detailed spectroscopic studies reveal that alkoxides promote the formation of homoleptic organoferrates such as [FeMe3]-, providing an alternative to toxic NMP to access these reactive intermediates.

2.
Angew Chem Int Ed Engl ; 61(15): e202114986, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35104376

ABSTRACT

Herein, we expand the current molecular-level understanding of one of the most important and effective additives in iron-catalyzed cross-coupling reactions, N,N,N',N'-tetramethylethylenediamine (TMEDA). Focusing on relevant phenyl and ethyl Grignard reagents and slow nucleophile addition protocols commonly used in effective catalytic systems, TMEDA-iron(II)-aryl intermediates are identified via in situ spectroscopy, X-ray crystallography, and detailed reaction studies to be a part of an iron(II)/(III)/(I) reaction cycle where radical recombination with FePhBr(TMEDA) (2Ph ) results in selective product formation in high yield. These results differ from prior studies with mesityl Grignard reagent, where poor product selectivity and low catalytic performance can be attributed to homoleptic iron-ate species. Overall, this study represents a critical advance in how amine additives such as TMEDA can modulate selectivity and reactivity of organoiron species in cross-coupling.

3.
ACS Catal ; 11(14): 8493-8503, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-35664726

ABSTRACT

The use of iron catalysts in carbon-carbon bond forming reactions is of interest as an alternative to precious metal catalysts, offering reduced cost, lower toxicity, and different reactivity. While well-defined ligands such as N-heterocyclic carbenes (NHCs) and phosphines can be highly effective in these reactions, additional additives such as N-methylpyrrolidone (NMP), N,N,N',N'-tetramethylethylenediamine (TMEDA), and iron salts that alter speciation can also be employed to achieve high product yields. However, in contrast to well-defined iron ligands, the roles of these additives are often ambiguous, and molecular-level insights into how they achieve effective catalysis are not well-defined. Using a unique physical-inorganic in situ spectroscopic approach, detailed insights into the effect of additives on iron speciation, mechanism, and catalysis can inform further reaction development. In this Perspective, recent advances will be discussed as well as ongoing challenges and potential opportunities in iron-catalyzed reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...