Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 2540, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29416080

ABSTRACT

A new compact silicon grating coupler enabling fibre-to-chip light coupling at a minimized taper length is proposed. The proposed coupler, which incorporates a hollow tapered waveguide, converts the spot-size of optical modes from micro- to nano-scales by reducing the lateral dimension from 15 µm to 300 nm at a length equals to 60 µm. The incorporation of such a coupler in photonic integrated circuit causes a physical footprint as small as 81 µm × 15 µm with coupling efficiency and 3-dB coupling bandwidth as high as 72% and 69 nm respectively.

2.
Opt Express ; 20(5): 5707-24, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22418378

ABSTRACT

A simplified millimeter-wave (mm-wave) radio-over-fiber (RoF) system employing a combination of optical heterodyning in signal generation and radio frequency (RF) self-homodyning in data recovery process is proposed and demonstrated. Three variants of the system are considered in which two independent uncorrelated lasers with a frequency offset equal to the desired mm-wave carrier frequency are used to generate the transmitted signal. Uncorrelated phase noise in the resulting mm-wave signal after photodetection was overcome by using RF self-homodyning in the data recovery process. Theoretical analyses followed by experimental results and simulated characterizations confirm the system's performance. A key advantage of the system is that it avoids the need for high-speed electro-optic and electronic devices operating at the RF carrier frequency at both the central station and base stations.


Subject(s)
Models, Theoretical , Optical Fibers , Telecommunications/instrumentation , Transducers , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Microwaves , Radio Waves
3.
Opt Express ; 18(22): 23161-72, 2010 Oct 25.
Article in English | MEDLINE | ID: mdl-21164657

ABSTRACT

In this paper, we theoretically analyze and demonstrate that spectral efficiency of a conventional direct detection based optical OFDM system (DDO-OFDM) can be improved significantly using frequency interleaving of adjacent DDO-OFDM channels where OFDM signal band of one channel occupies the spectral gap of other channel and vice versa. We show that, at optimum operating condition, the proposed technique can effectively improve the spectral efficiency of the conventional DDO-OFDM system as much as 50%. We also show that such a frequency interleaved DDO-OFDM system, with a bit rate of 48 Gb/s within 25 GHz bandwidth, achieves sufficient power budget after transmission over 25 km single mode fiber to be used in next-generation time-division-multiplexed passive optical networks (TDM-PON). Moreover, by applying 64- quadrature amplitude modulation (QAM), the system can be further scaled up to 96 Gb/s with a power budget sufficient for 1:16 split TDM-PON.

SELECTION OF CITATIONS
SEARCH DETAIL
...