Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Med ; 5(7): 718-734.e4, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38552629

ABSTRACT

BACKGROUND: REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial) showed that icosapent ethyl (IPE) reduced major adverse cardiovascular events by 25%. Since the underlying mechanisms for these benefits are not fully understood, the IPE-PREVENTION CardioLink-14 trial (ClinicalTrials.gov: NCT04562467) sought to determine if IPE regulates vascular regenerative (VR) cell content in people with mild to moderate hypertriglyceridemia. METHODS: Seventy statin-treated individuals with triglycerides ≥1.50 and <5.6 mmol/L and either atherosclerotic cardiovascular disease or type 2 diabetes with additional cardiovascular risk factors were randomized to IPE (4 g/day) or usual care. VR cells with high aldehyde dehydrogenase activity (ALDHhi) were isolated from blood collected at the baseline and 3-month visits and characterized with lineage-specific cell surface markers. The primary endpoint was the change in frequency of pro-vascular ALDHhiside scatter (SSC)lowCD133+ progenitor cells. Change in frequencies of ALDHhiSSCmid monocyte and ALDHhiSSChi granulocyte precursor subsets, reactive oxygen species production, serum biomarkers, and omega-3 levels were also evaluated. FINDINGS: Baseline characteristics, cardiovascular risk factors, and medications were balanced between the groups. Compared to usual care, IPE increased the mean frequency of ALDHhiSSClowCD133+ cells (-1.00% ± 2.45% vs. +7.79% ± 1.70%; p = 0.02), despite decreasing overall ALDHhiSSClow cell frequency. IPE assignment also reduced oxidative stress in ALDHhiSSClow progenitors and increased ALDHhiSSChi granulocyte precursor cell content. CONCLUSIONS: IPE-PREVENTION CardioLink-14 provides the first translational evidence that IPE can modulate VR cell content and suggests a novel mechanism that may underlie the cardioprotective effects observed with IPE in REDUCE-IT. FUNDING: HLS Therapeutics provided the IPE in kind and had no role in the study design, conduct, analyses, or interpretation.


Subject(s)
Eicosapentaenoic Acid , Humans , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/administration & dosage , Male , Female , Middle Aged , Aged , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Aldehyde Dehydrogenase/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Cardiovascular Diseases/prevention & control , Atherosclerosis/drug therapy , Triglycerides/blood
2.
J Am Coll Cardiol ; 83(7): 755-769, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38355246

ABSTRACT

BACKGROUND: South Asian individuals shoulder a disproportionate burden of cardiometabolic diseases. OBJECTIVES: The purpose of this study was to determine if vascular regenerative cell content varies significantly between South Asian and White European people. METHODS: Between January 2022 and January 2023, 60 South Asian and 60 White European adults with either documented cardiovascular disease or established diabetes with ≥1 other cardiovascular risk factor were prospectively enrolled. Vascular regenerative cell content in venous blood was enumerated using a flow cytometry assay that is based on high aldehyde dehydrogenase (ALDHhi) activity and cell surface marker phenotyping. The primary outcome was the difference in frequency of circulating ALDHhi progenitor cells, monocytes, and granulocytes between the 2 groups. RESULTS: Compared with White European participants, those of South Asian ethnicity were younger (69 ± 10 years vs 66 ± 9 years; P < 0.05), had lower weight (88 ± 19 kg vs 75 ± 13 kg; P < 0.001), and exhibited a greater prevalence of type 2 diabetes (62% vs 92%). South Asian individuals had markedly lower circulating frequencies of pro-angiogenic ALDHhiSSClowCD133+ progenitor cells (P < 0.001) and ALDHhiSSCmidCD14+CD163+ monocytes with vessel-reparative capacity (P < 0.001), as well as proportionally more ALDHhi progenitor cells with high reactive oxygen species content (P < 0.05). After correction for sex, age, body mass index, and glycated hemoglobin, South Asian ethnicity was independently associated with lower ALDHhiSSClowCD133+ cell count. CONCLUSIONS: South Asian people with cardiometabolic disease had less vascular regenerative and reparative cells suggesting compromised vessel repair capabilities that may contribute to the excess vascular risk in this population. (The Role of South Asian vs European Origins on Circulating Regenerative Cell Exhaustion [ORIGINS-RCE]; NCT05253521).


Subject(s)
Diabetes Mellitus, Type 2 , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...