Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Neuroendocrinol ; 33(8): e12997, 2021 08.
Article in English | MEDLINE | ID: mdl-34240761

ABSTRACT

The gravitostat is a novel homeostatic body weight-regulating mechanism, mostly studied in mice, and recently confirmed in obese humans. In the present study, we explored the effect of weight loading on metabolic outcomes, meal patterns and parameters linked to energy expenditure in both obese and lean rats. Diet-induced obese (DIO) and lean rats were implanted with capsules weighing either 15% of biological body weight (load) or empty capsules (1.3% of body weight; controls). Loading protected against fat accumulation more markedly in the DIO group. In line with this, the obesity-related impairment in insulin sensitivity was notably ameliorated in DIO rats upon loading, as revealed by the reduction in serum insulin levels and homeostatic model assessment for insulin resistance index scores. Although 24-hour caloric intake was reduced in both groups, this effect was greater in loaded DIO rats than in loaded lean peers. During days 10-16, after recovery from surgery, loading: (i) decreased meal size in both groups (only during the light phase in DIO rats) but this was compensated in lean rats by an increase in meal frequency; (ii) reduced dark phase locomotor activity only in lean rats; and (iii) reduced mean caloric efficiency in DIO rats. Muscle weight was unaffected by loading in either group. Dietary-obese rats are therefore more responsive than lean rats to loading.


Subject(s)
Adipose Tissue/metabolism , Homeostasis/physiology , Obesity , Weight Gain , Weight-Bearing/physiology , Animals , Body Weight Maintenance/physiology , Diet , Energy Intake/physiology , Female , Male , Obesity/metabolism , Obesity/pathology , Obesity/physiopathology , Obesity/prevention & control , Rats , Rats, Sprague-Dawley
2.
PLoS One ; 16(4): e0242461, 2021.
Article in English | MEDLINE | ID: mdl-33852568

ABSTRACT

Sweet foods are commonly used as rewards for desirable behavior, specifically among children. This study examines whether such practice may contribute to reinforce the valuation of these foods. Two experiments were conducted, one with children, the other with rats. The first study, conducted with first graders (n = 214), shows that children who receive a food reward for performing a cognitive task subsequently value the food more compared to a control group who received the same food without performing any task. The second study, conducted on rats (n = 64), shows that rewarding with food also translates into higher calorie intake over a 24-hour period. These results suggest that the common practice of rewarding children with calorie-dense sweet foods is a plausible contributing factor to obesity and might therefore be ill advised.


Subject(s)
Eating/psychology , Feeding Behavior/psychology , Food Preferences/psychology , Taste/physiology , Animals , Child , Energy Intake/physiology , Female , Food , Humans , Male , Obesity/psychology , Rats , Rats, Sprague-Dawley , Reinforcement, Psychology , Reward
3.
Front Neurosci ; 15: 633018, 2021.
Article in English | MEDLINE | ID: mdl-33658910

ABSTRACT

The lateral parabrachial nucleus (lPBN), located in the pons, is a well-recognized anorexigenic center harboring, amongst others, the calcitonin gene-related peptide (CGRP)-expressing neurons that play a key role. The receptor for the orexigenic hormone ghrelin (the growth hormone secretagogue receptor, GHSR) is also abundantly expressed in the lPBN and ghrelin delivery to this site has recently been shown to increase food intake and alter food choice. Here we sought to explore whether GHSR-expressing cells in the lPBN (GHSR lPBN cells) contribute to feeding control, food choice and body weight gain in mice offered an obesogenic diet, involving studies in which GHSR lPBN cells were silenced. We also explored the neurochemical identity of GHSR lPBN cells. To silence GHSR lPBN cells, Ghsr-IRES-Cre male mice were bilaterally injected intra-lPBN with a Cre-dependent viral vector expressing tetanus toxin-light chain. Unlike control wild-type littermates that significantly increased in body weight on the obesogenic diet (i.e., high-fat high-sugar free choice diet comprising chow, lard and 9% sucrose solution), the heterozygous mice with silenced GHSR lPBN cells were resistant to diet-induced weight gain with significantly lower food intake and fat weight. The lean phenotype appeared to result from a decreased food intake compared to controls and caloric efficiency was unaltered. Additionally, silencing the GHSR lPBN cells altered food choice, significantly reducing palatable food consumption. RNAscope and immunohistochemical studies of the lPBN revealed considerable co-expression of GHSR with glutamate and pituitary adenylate cyclase-activating peptide (PACAP), and much less with neurotensin, substance P and CGRP. Thus, the GHSR lPBN cells are important for diet-induced weight gain and adiposity, as well as in the regulation of food intake and food choice. Most GHSR lPBN cells were found to be glutamatergic and the majority (76%) do not belong to the well-characterized anorexigenic CGRP cell population.

4.
Obesity (Silver Spring) ; 28(8): 1503-1511, 2020 08.
Article in English | MEDLINE | ID: mdl-32627950

ABSTRACT

OBJECTIVE: The lateral parabrachial nucleus (lPBN) in the brainstem has emerged as a key area involved in feeding control that is targeted by several circulating anorexigenic hormones. Here, the objective was to determine whether the lPBN is also a relevant site for the orexigenic hormone ghrelin, inspired by studies in mice and rats showing that there is an abundance of ghrelin receptors in this area. METHODS: This study first explored whether iPBN cells respond to ghrelin involving Fos mapping and electrophysiological studies in rats. Next, rats were injected acutely with ghrelin, a ghrelin receptor antagonist, or vehicle into the lPBN to investigate feeding-linked behaviors. RESULTS: Curiously, ghrelin injection (intracerebroventricular or intravenous) increased Fos protein expression in the lPBN yet the predominant electrophysiological response was inhibitory. Intra-lPBN ghrelin injection increased chow or high-fat diet intake, whereas the antagonist decreased chow intake only. In a choice paradigm, intra-lPBN ghrelin increased intake of chow but not lard or sucrose. Intra-lPBN ghrelin did not alter progressive ratio lever pressing for sucrose or conditioned place preference for chocolate. CONCLUSIONS: The lPBN is a novel locus from which ghrelin can alter consummatory behaviors (food intake and choice) but not appetitive behaviors (food reward and motivation).


Subject(s)
Feeding Behavior/physiology , Parabrachial Nucleus/metabolism , Receptors, Ghrelin/metabolism , Animals , Male , Rats , Rats, Sprague-Dawley
5.
J Neuroendocrinol ; 31(7): e12665, 2019 07.
Article in English | MEDLINE | ID: mdl-30525248

ABSTRACT

The "hunger" hormone, ghrelin, is powerfully orexigenic. Even in the absence of hunger, ghrelin delivery to rats increases consumption of chow, as well as palatable foods, and increases motivated behaviour for palatable food rewards. Inspired by the finding that ghrelin increases the selection of chow in rats offered a choice diet (lard, sucrose or chow) and even in rats bingeing on a high-fat diet, we aimed to explore whether the effects of ghrelin on motivation extend to regular chow. Rats were conditioned to lever press for either chow or sucrose pellets in a progressive ratio (PR) operant conditioning task. The effect of acute i.c.v. delivery of ghrelin on both chow and sucrose self-administration was determined and compared with overnight fasting (ie, when endogenous ghrelin levels are elevated). We found that ghrelin similarly increased motivated behaviour for chow and sucrose pellets. The effect of fasting on motivated behaviour for both food pellets was comparable in magnitude to that induced by ghrelin, albeit with an earlier ceiling effect during the PR session. Devaluation experiments (in which rats are offered either food reinforcer in excess prior to PR testing) did not support the hypothesis that sucrose pellets would be more difficult to devalue (as a result of their higher incentive value) than chow pellets. When exchanging the respective pellets during a PR session, chow-conditioned rats were more motivated for sucrose pellets compared to chow pellets; however, sucrose-conditioned rats were similarly motivated for chow pellets compared to sucrose pellets. Thus, using sucrose as a reward may increase the motivation even for less palatable foods. We conclude that the impact of ghrelin on food-motivated behaviour in fed rats is not limited to palatable foods but extends to regular chow, and also that the magnitude of the effect is considerable compared to that of an overnight fast.


Subject(s)
Brain/physiology , Feeding Behavior/physiology , Ghrelin/physiology , Motivation/physiology , Animals , Brain/drug effects , Conditioning, Operant , Eating , Feeding Behavior/drug effects , Ghrelin/administration & dosage , Hunger/drug effects , Hunger/physiology , Male , Motivation/drug effects , Rats, Sprague-Dawley , Reward
6.
J Neuroendocrinol ; 31(7): e12676, 2019 07.
Article in English | MEDLINE | ID: mdl-30580497

ABSTRACT

The circulating orexigenic hormone ghrelin targets many brain areas involved in feeding control and signals via a dedicated receptor, the growth hormone secretagogue receptor 1A. One unexplored target area for ghrelin is the supramammillary nucleus (SuM), a hypothalamic area involved in motivation and reinforcement and also recently linked to metabolic control. Given that ghrelin binds to the SuM, we explored whether SuM cells respond to ghrelin and/or are activated when endogenous ghrelin levels are elevated. We found that peripheral ghrelin injection activates SuM cells in rats, reflected by an increase in the number of cells expressing c-Fos protein in this area, as welll as by the predominantly excitatory response of single SuM cells recorded in in vivo electrophysiological studies. Further c-Fos mapping studies reveal that this area is also activated in rats in situations when circulating ghrelin levels are known to be elevated: in food-restricted rats anticipating the consumption of food and in fed rats anticipating the consumption of an energy-dense food. We also show that intra-SuM injection of ghrelin induces a feeding response in rats suggesting that, if peripheral ghrelin is able to access the SuM, it may have direct effects on this brain region. Collectively, our data demonstrate that the SuM is activated when peripheral ghrelin levels are high, further supporting the emerging role for this brain area in metabolic and feeding control.


Subject(s)
Anticipation, Psychological/physiology , Feeding Behavior/physiology , Ghrelin/physiology , Hypothalamus, Posterior/physiology , Neurons/physiology , Animals , Anticipation, Psychological/drug effects , Eating/drug effects , Feeding Behavior/drug effects , Food Deprivation , Ghrelin/administration & dosage , Male , Neurons/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Rats, Sprague-Dawley
7.
Proc Natl Acad Sci U S A ; 115(2): 427-432, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29279372

ABSTRACT

Subjects spending much time sitting have increased risk of obesity but the mechanism for the antiobesity effect of standing is unknown. We hypothesized that there is a homeostatic regulation of body weight. We demonstrate that increased loading of rodents, achieved using capsules with different weights implanted in the abdomen or s.c. on the back, reversibly decreases the biological body weight via reduced food intake. Importantly, loading relieves diet-induced obesity and improves glucose tolerance. The identified homeostat for body weight regulates body fat mass independently of fat-derived leptin, revealing two independent negative feedback systems for fat mass regulation. It is known that osteocytes can sense changes in bone strain. In this study, the body weight-reducing effect of increased loading was lost in mice depleted of osteocytes. We propose that increased body weight activates a sensor dependent on osteocytes of the weight-bearing bones. This induces an afferent signal, which reduces body weight. These findings demonstrate a leptin-independent body weight homeostat ("gravitostat") that regulates fat mass.


Subject(s)
Adipose Tissue/metabolism , Body Weight/physiology , Homeostasis/drug effects , Leptin/pharmacology , Obesity/metabolism , Animals , Diet, High-Fat/adverse effects , Energy Intake/drug effects , Energy Intake/physiology , Energy Metabolism/drug effects , Energy Metabolism/physiology , Gene Expression Regulation/drug effects , Homeostasis/physiology , Leptin/administration & dosage , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Obesity/etiology , Obesity/genetics , Osteocytes/metabolism , Rats, Sprague-Dawley , Weight Loss/drug effects , Weight Loss/physiology
8.
Eur Neuropsychopharmacol ; 27(8): 809-815, 2017 08.
Article in English | MEDLINE | ID: mdl-28647450

ABSTRACT

Feelings of hunger carry a negative-valence (emotion) signal that appears to be conveyed through agouti-related peptide (AgRP) neurons in the hypothalamic arcuate nucleus. The circulating hunger hormone, ghrelin, activates these neurons although it remains unclear whether it also carries a negative-valence signal. Given that ghrelin also activates pathways in the midbrain that are important for reward, it remains possible that ghrelin could act as a positive reinforcer and hence, carry a positive-valence signal. Here we used condition preference/avoidance tests to explore the reinforcing/aversive properties of ghrelin, delivered by intracerebroventricular (ICV) injection (2µg/injection once a day for 4 days). We found that ICV ghrelin produces conditioned avoidance, both in a conditioned place preference/avoidance test (CPP/CPA, in which the animals avoid a chamber previously paired to ghrelin injection) and in a conditioned flavor preference/avoidance test (CFP/CFA, in which the animals consume/avoid a taste previously paired to ghrelin injection). These effects of ghrelin to induce a CPA were observed when conditioning to ghrelin occurred in the absence or presence of food. We did not find evidence, however, that brain ghrelin delivery to rats induces malaise (in the pica test). Our data indicate that ICV ghrelin carries a negative-valence signal consistent with its role as a circulating hunger hormone and with its effects to activate AgRP neurones.


Subject(s)
Avoidance Learning/drug effects , Conditioning, Operant/drug effects , Ghrelin/pharmacology , Animals , Eating/drug effects , Injections, Intraventricular , Male , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Reinforcement, Psychology , Time Factors
9.
PLoS One ; 11(2): e0149456, 2016.
Article in English | MEDLINE | ID: mdl-26925974

ABSTRACT

We sought to determine whether the orexigenic hormone, ghrelin, is involved in the intrinsic regulation of food choice in rats. Ghrelin would seem suited to serve such a role given that it signals hunger information from the stomach to brain areas important for feeding control, including the hypothalamus and reward system (e.g. ventral tegmental area, VTA). Thus, in rats offered a choice of palatable foods (sucrose pellets and lard) superimposed on regular chow for 2 weeks, we explored whether acute central delivery of ghrelin (intracerebroventricular (ICV) or intra-VTA) is able to redirect their dietary choice. The major unexpected finding is that, in rats with high baseline lard intake, acute ICV ghrelin injection increased their chow intake over 3-fold, relative to vehicle-injected controls, measured at both 3 hr and 6 hr after injection. Similar effects were observed when ghrelin was delivered to the VTA, thereby identifying the VTA as a likely contributing neurobiological substrate for these effects. We also explored food choice after an overnight fast, when endogenous ghrelin levels are elevated, and found similar effects of dietary choice to those described for ghrelin. These effects of fasting on food choice were suppressed in models of suppressed ghrelin signaling (i.e. peripheral injection of a ghrelin receptor antagonist to rats and ghrelin receptor (GHSR) knock-out mice), implicating a role for endogenous ghrelin in the changes in food choice that occur after an overnight fast. Thus, in line with its role as a gut-brain hunger hormone, ghrelin appears to be able to acutely alter food choice, with notable effects to promote "healthy" chow intake, and identify the VTA as a likely contributing neurobiological substrate for these effects.


Subject(s)
Food Preferences/drug effects , Ghrelin/administration & dosage , Animal Feed , Animals , Fasting , Injections , Male , Mice , Mice, Knockout , Rats , Receptors, Ghrelin/antagonists & inhibitors , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...