Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 85(3): 033903, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24689596

ABSTRACT

A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10(-2) to 10(7) Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.

2.
Rev Sci Instrum ; 84(3): 036109, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23556861

ABSTRACT

The sensitivity of an imperfectly balanced impedance bridge is limited by the remaining offset voltage. Here, we present a procedure for offset reduction in impedance measurements using a lock-in amplifier, by applying a complex compensating voltage external to the bridge. This procedure takes into account instrumental damping and phase shifting, which generally occur at the high end of the operational frequency range. Measurements demonstrate that the output of the circuit rapidly converges to the instrumentally limited noise at any frequency.

3.
Langmuir ; 27(1): 116-25, 2011 Jan 04.
Article in English | MEDLINE | ID: mdl-21128605

ABSTRACT

We studied, by means of polarized light microscopy, the shape and director field of nematic tactoids as a function of their size in dispersions of colloidal gibbsite platelets in polar and apolar solvents. Because of the homeotropic anchoring of the platelets to the interface, we found large tactoids to be spherical with a radial director field, whereas small tactoids turn out to have an oblate shape and a homogeneous director field, in accordance with theoretical predictions. The transition from a radial to a homogeneous director field seems to proceed via two different routes depending in our case on the solvent. In one route, the what presumably is a hedgehog point defect in the center of the tactoid transforms into a ring defect with a radius that presumably goes to infinity with decreasing drop size. In the other route, the hedgehog defect is displaced from the center to the edge of the tactoid, where it becomes virtual again going to infinity with decreasing drop size. Furthermore, quantitative analysis of the tactoid properties provides us with useful information on the ratio of the splay elastic constant and the anchoring strength and the ratio of the anchoring strength and the surface tension.

4.
Rev Sci Instrum ; 79(1): 013901, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18248044

ABSTRACT

A sensitive balanced differential transformer was built to measure complex initial parallel magnetic susceptibility spectra in the 0.01-1000 Hz range. The alternating magnetic field can be chosen sufficiently weak that the magnetic structure of the samples is only slightly perturbed and the low frequencies make it possible to study the rotational dynamics of large magnetic colloidal particles or aggregates dispersed in a liquid. The distinguishing features of the setup are the novel multilayered cylindrical coils with a large sample volume and a large number of secondary turns (55 000) to measure induced voltages with a good signal-to-noise ratio, the use of a dual channel function generator to provide an ac current to the primary coils and an amplitude- and phase-adjusted compensation voltage to the dual phase differential lock-in amplifier, and the measurement of several vector quantities at each frequency. We present the electrical impedance characteristics of the coils, and we demonstrate the performance of the setup by measurement on magnetic colloidal dispersions covering a wide range of characteristic relaxation frequencies and magnetic susceptibilities, from chi approximately -10(-5) for pure water to chi>1 for concentrated ferrofluids.

SELECTION OF CITATIONS
SEARCH DETAIL
...