Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8874, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38632415

ABSTRACT

One of the major consequences of the COVID-19 pandemic has been the significant incidence of persistent fatigue following resolution of an acute infection (i.e. post-COVID fatigue). We have shown previously that, in comparison to healthy controls, those suffering from post-COVID fatigue exhibit changes in muscle physiology, cortical circuitry, and autonomic function. Whether these changes preceded infection, potentially predisposing people to developing post-COVID fatigue, or whether the changes were a consequence of infection was unclear. Here we present results of a 12-month longitudinal study of 18 participants from the same cohort of post-COVID fatigue sufferers to investigate these correlates of fatigue over time. We report improvements in self-perception of the impact of fatigue via questionnaires, as well as significant improvements in objective measures of peripheral muscle fatigue and autonomic function, bringing them closer to healthy controls. Additionally, we found reductions in muscle twitch tension rise times, becoming faster than controls, suggesting that the improvement in muscle fatigability might be due to a process of adaptation rather than simply a return to baseline function.


Subject(s)
COVID-19 , Humans , Follow-Up Studies , Longitudinal Studies , Pandemics , Fasciculation
2.
Brain Commun ; 5(3): fcad122, 2023.
Article in English | MEDLINE | ID: mdl-37304792

ABSTRACT

Following infection with SARS-CoV-2, a substantial minority of people develop lingering after-effects known as 'long COVID'. Fatigue is a common complaint with a substantial impact on daily life, but the neural mechanisms behind post-COVID fatigue remain unclear. We recruited 37 volunteers with self-reported fatigue after a mild COVID infection and carried out a battery of behavioural and neurophysiological tests assessing the central, peripheral and autonomic nervous systems. In comparison with age- and sex-matched volunteers without fatigue (n = 52), we show underactivity in specific cortical circuits, dysregulation of autonomic function and myopathic change in skeletal muscle. Cluster analysis revealed no subgroupings, suggesting post-COVID fatigue is a single entity with individual variation, rather than a small number of distinct syndromes. Based on our analysis, we were also able to exclude dysregulation in sensory feedback circuits and descending neuromodulatory control. These abnormalities on objective tests may aid in the development of novel approaches for disease monitoring.

3.
J Mol Biol ; 319(2): 491-9, 2002 May 31.
Article in English | MEDLINE | ID: mdl-12051923

ABSTRACT

The amoeboid locomotion of nematode sperm is mediated by the assembly dynamics of the major sperm protein (MSP). MSP forms fibrous networks based on a hierarchy of macromolecular assemblies: helical subfilaments are built from MSP dimers; filaments are formed from two subfilaments coiling round one another; and filaments themselves supercoil to produce bundles. To provide a structural context for understanding the role of these macromolecular assemblies in cell locomotion, we have determined the 2.6 A resolution structure of crystals of Caenorhabditis elegans MSP that are constructed from helices of MSP chains that are analogous to the subfilaments from which filaments are constructed. Comparison with the crystal structures of dimers and helical assemblies of Ascaris suum MSP has identified five conserved interaction interfaces that suggest how subfilaments interact in filaments and how filaments can form bundles. The interfaces frequently involve the loop containing residues 78-85, which is divergent between MSP homologues, and the loop containing residues 98-103, which is highly conserved.


Subject(s)
Caenorhabditis elegans/chemistry , Helminth Proteins/chemistry , Amino Acid Sequence , Animals , Ascaris suum/chemistry , Binding Sites , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/ultrastructure , Crystallography, X-Ray , Helminth Proteins/metabolism , Helminth Proteins/ultrastructure , Hydrogen Bonding , Microscopy, Electron , Models, Molecular , Molecular Sequence Data , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...