Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Adv Funct Mater ; 34(17)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38693998

ABSTRACT

Although tissue culture plastic has been widely employed for cell culture, the rigidity of plastic is not physiologic. Softer hydrogels used to culture cells have not been widely adopted in part because coupling chemistries are required to covalently capture extracellular matrix (ECM) proteins and support cell adhesion. To create an in vitro system with tunable stiffnesses that readily adsorbs ECM proteins for cell culture, we present a novel hydrophobic hydrogel system via chemically converting hydroxyl residues on the dextran backbone to methacrylate groups, thereby transforming non-protein adhesive, hydrophilic dextran to highly protein adsorbent substrates. Increasing methacrylate functionality increases the hydrophobicity in the resulting hydrogels and enhances ECM protein adsorption without additional chemical reactions. These hydrophobic hydrogels permit facile and tunable modulation of substrate stiffness independent of hydrophobicity or ECM coatings. Using this approach, we show that substrate stiffness and ECM adsorption work together to affect cell morphology and proliferation, but the strengths of these effects vary in different cell types. Furthermore, we reveal that stiffness mediated differentiation of dermal fibroblasts into myofibroblasts is modulated by the substrate ECM. Our material system demonstrates remarkable simplicity and flexibility to tune ECM coatings and substrate stiffness and study their effects on cell function.

2.
Adv Healthc Mater ; : e2400529, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441411

ABSTRACT

Effective tendon regeneration following injury is contingent on appropriate differentiation of recruited cells and deposition of mature, aligned, collagenous extracellular matrix that can withstand the extreme mechanical demands placed on the tissue. As such, myriad biomaterial approaches have been explored to provide biochemical and physical cues that encourage tenogenesis and template aligned matrix deposition in lieu of dysfunctional scar tissue formation. Fiber-reinforced hydrogels present an ideal biomaterial system toward this end given their transdermal injectability, tunable stiffness over a range amenable to tenogenic differentiation of progenitors, and capacity for modular inclusion of biochemical cues. Here, tunable and modular, fiber-reinforced, synthetic hydrogels are employed to elucidate salient microenvironmental determinants of tenogenesis and aligned collagen deposition by tendon progenitor cells. Transforming growth factor ß3 drives a cell fate switch toward pro-regenerative or pro-fibrotic phenotypes, which can be biased toward the former by culture in softer microenvironments or inhibition of the RhoA/ROCK activity. Furthermore, studies demonstrate that topographical anisotropy in fiber-reinforced hydrogels critically mediates the alignment of de novo collagen fibrils, reflecting native tendon architecture. These findings inform the design of cell-free, injectable, synthetic hydrogels for tendon tissue regeneration and, likely, that of a range of load-bearing connective tissues.

3.
PLoS One ; 19(3): e0298863, 2024.
Article in English | MEDLINE | ID: mdl-38530829

ABSTRACT

Advancing human induced pluripotent stem cell derived cardiomyocyte (hiPSC-CM) technology will lead to significant progress ranging from disease modeling, to drug discovery, to regenerative tissue engineering. Yet, alongside these potential opportunities comes a critical challenge: attaining mature hiPSC-CM tissues. At present, there are multiple techniques to promote maturity of hiPSC-CMs including physical platforms and cell culture protocols. However, when it comes to making quantitative comparisons of functional behavior, there are limited options for reliably and reproducibly computing functional metrics that are suitable for direct cross-system comparison. In addition, the current standard functional metrics obtained from time-lapse images of cardiac microbundle contraction reported in the field (i.e., post forces, average tissue stress) do not take full advantage of the available information present in these data (i.e., full-field tissue displacements and strains). Thus, we present "MicroBundleCompute," a computational framework for automatic quantification of morphology-based mechanical metrics from movies of cardiac microbundles. Briefly, this computational framework offers tools for automatic tissue segmentation, tracking, and analysis of brightfield and phase contrast movies of beating cardiac microbundles. It is straightforward to implement, runs without user intervention, requires minimal input parameter setting selection, and is computationally inexpensive. In this paper, we describe the methods underlying this computational framework, show the results of our extensive validation studies, and demonstrate the utility of exploring heterogeneous tissue deformations and strains as functional metrics. With this manuscript, we disseminate "MicroBundleCompute" as an open-source computational tool with the aim of making automated quantitative analysis of beating cardiac microbundles more accessible to the community.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac , Cell Culture Techniques , Cell Differentiation
4.
Nat Chem Biol ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509349

ABSTRACT

Angiogenic programming in the vascular endothelium is a tightly regulated process for maintaining tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Here, we report that hypoxic upregulation of ·NO in endothelial cells reprograms the transsulfuration pathway to increase biogenesis of hydrogen sulfide (H2S), a proangiogenic metabolite. However, decreased H2S oxidation due to sulfide quinone oxidoreductase (SQOR) deficiency synergizes with hypoxia, inducing a reductive shift and limiting endothelial proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body (WBCreSqorfl/fl) and endothelial-specific (VE-cadherinCre-ERT2Sqorfl/fl) Sqor-knockout mice exhibit lower mass and angiogenesis than control mice. WBCreSqorfl/fl mice also exhibit decreased muscle angiogenesis following femoral artery ligation compared to control mice. Collectively, our data reveal the molecular intersections between H2S, O2 and ·NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization.

5.
Adv Sci (Weinh) ; 11(3): e2306210, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37997199

ABSTRACT

Intercellular communication is critical to the formation and homeostatic function of all tissues. Previous work has shown that cells can communicate mechanically via the transmission of cell-generated forces through their surrounding extracellular matrix, but this process is not well understood. Here, mechanically defined, synthetic electrospun fibrous matrices are utilized in conjunction with a microfabrication-based cell patterning approach to examine mechanical intercellular communication (MIC) between endothelial cells (ECs) during their assembly into interconnected multicellular networks. It is found that cell force-mediated matrix displacements in deformable fibrous matrices underly directional extension and migration of neighboring ECs toward each other prior to the formation of stable cell-cell connections enriched with vascular endothelial cadherin (VE-cadherin). A critical role is also identified for calcium signaling mediated by focal adhesion kinase and mechanosensitive ion channels in MIC that extends to multicellular assembly of 3D vessel-like networks when ECs are embedded within fibrin hydrogels. These results illustrate a role for cell-generated forces and ECM mechanical properties in multicellular assembly of capillary-like EC networks and motivates the design of biomaterials that promote MIC for vascular tissue engineering.


Subject(s)
Cell Communication , Endothelial Cells , Extracellular Matrix , Tissue Engineering , Biocompatible Materials
6.
Bioact Mater ; 32: 292-303, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37876554

ABSTRACT

Synthetic matrices which mimic the extracellular composition of native tissue create a comprehensive model for studying development and disease. Here, we have engineered a composite material which retains cell-secreted ECM for the culture of ovarian follicles by embedding electrospun dextran fibers functionalized with basement membrane binder (BMB) peptide in PEG hydrogels. In the presence of ECM-sequestering fibers, encapsulated immature primordial follicles and ovarian stromal cells aggregated into large organoid-like structures with dense deposition of laminin, perlecan, and collagen I, leading to steroidogenesis and significantly greater rates of oocyte survival and growth. We determined that cell aggregation restored key cell-cell interactions critical for oocyte survival, whereas oocyte growth was dependent on cell-matrix interactions achieved in the presence of BMB. Here we have shown that sequestration and retention of cell-secreted ECM along synthetic fibers mimics fibrous ECM structure and restores the cell-cell and cell-matrix interactions critical for engineering an artificial ovary.

7.
iScience ; 26(12): 108472, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38077130

ABSTRACT

Mechanical forces provide critical biological signals to cells during healthy and aberrant organ development as well as during disease processes in adults. Within the cardiopulmonary system, mechanical forces, such as shear, compressive, and tensile forces, act across various length scales, and dysregulated forces are often a leading cause of disease initiation and progression such as in bronchopulmonary dysplasia and cardiomyopathies. Engineered in vitro models have supported studies of mechanical forces in a number of tissue and disease-specific contexts, thus enabling new mechanistic insights into cardiopulmonary development and disease. This review first provides fundamental examples where mechanical forces operate at multiple length scales to ensure precise lung and heart function. Next, we survey recent engineering platforms and tools that have provided new means to probe and modulate mechanical forces across in vitro and in vivo settings. Finally, the potential for interdisciplinary collaborations to inform novel therapeutic approaches for a number of cardiopulmonary diseases are discussed.

8.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961415

ABSTRACT

The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, we established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM-mimetic synthetic, fiber matrices and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), enabling real-time contractility readouts, in-depth structural assessment, and tissue-specific computational modeling. We find that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC-CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell-ECM interactions in myofibril assembly and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC-CM tissue models with controllable architecture and mechanics can inform the design of translatable regenerative cardiac therapies.

9.
Acta Biomater ; 172: 123-134, 2023 12.
Article in English | MEDLINE | ID: mdl-37879587

ABSTRACT

Engineered heart tissues (EHTs) present a potential solution to some of the current challenges in the treatment of heart disease; however, the development of mature, adult-like cardiac tissues remains elusive. Mechanical stimuli have been observed to improve whole-tissue function and cardiomyocyte (CM) maturation, although our ability to fully utilize these mechanisms is hampered, in part, by our incomplete understanding of the mechanobiology of EHTs. In this work, we leverage experimental data, produced by a mechanically tunable experimental setup, to introduce a tissue-specific computational modeling pipeline of EHTs. Our new modeling pipeline generates simulated, image-based EHTs, capturing ECM and myofibrillar structure as well as functional parameters estimated directly from experimental data. This approach enables the unique estimation of EHT function by data-based estimation of CM active stresses. We use this experimental and modeling pipeline to study different mechanical environments, where we contrast the force output of the tissue with the computed active stress of CMs. We show that the significant differences in measured experimental forces can largely be explained by the levels of myofibril formation achieved by the CMs in the distinct mechanical environments, with active stress showing more muted variations across conditions. The presented model also enables us to dissect the relative contributions of myofibrils and extracellular matrix to tissue force output, a task difficult to address experimentally. These results highlight the importance of tissue-specific modeling to augment EHT experiments, providing deeper insights into the mechanobiology driving EHT function. STATEMENT OF SIGNIFICANCE: Engineered heart tissues (EHTs) have the potential to revolutionize the way heart disease is treated. However, developing mature cardiomyocytes (CM) in these tissues remains a challenge due, in part, to our incomplete understanding of the fundamental biomechanical mechanisms that drive EHT development. This work integrates the experimental data of an EHT platform developed to study the influence of mechanics in CM maturation with computational biomechanical models. This approach is used to augment conclusions obtained in-vitro - by measuring quantities such as cell stress and strain - and to dissect the relevance of each component in the whole tissue performance. Our results show how a combination of specialized in-silico and in-vitro approaches can help us better understand the mechanobiology of EHTs.


Subject(s)
Heart Diseases , Myocytes, Cardiac , Humans , Extracellular Matrix , Tissue Engineering/methods , Myocardium
10.
Adv Healthc Mater ; : e2302498, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37768019

ABSTRACT

Spinal cord injury (SCI) is a life-altering event, which often results in loss of sensory and motor function below the level of trauma. Biomaterial therapies have been widely investigated in SCI to promote directional regeneration but are often limited by their pre-constructed size and shape. Herein, the design parameters of microporous annealed particles (MAPs) are investigated with tubular geometries that conform to the injury and direct axons across the defect to support functional recovery. MAP tubes prepared from 20-, 40-, and 60-micron polyethylene glycol (PEG) beads are generated and implanted in a T9-10 murine hemisection model of SCI. Tubes attenuate glial and fibrotic scarring, increase innate immune cell density, and reduce inflammatory phenotypes in a bead size-dependent manner. Tubes composed of 60-micron beads increase the cell density of the chronic macrophage response, while neutrophil infiltration and phenotypes do not deviate from those seen in controls. At 8 weeks postinjury, implantation of tubes composed of 60-micron beads results in enhanced locomotor function, robust axonal ingrowth, and remyelination through both lumens and the inter-tube space. Collectively, these studies demonstrate the importance of bead size in MAP construction and highlight PEG tubes as a biomaterial therapy to promote regeneration and functional recovery in SCI.

11.
bioRxiv ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36993187

ABSTRACT

Angiogenic programming in the vascular endothelium is a tightly regulated process to maintain tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Herein, we report that hypoxic upregulation of NO synthesis in endothelial cells reprograms the transsulfuration pathway and increases H 2 S biogenesis. Furthermore, H 2 S oxidation by mitochondrial sulfide quinone oxidoreductase (SQOR) rather than downstream persulfides, synergizes with hypoxia to induce a reductive shift, limiting endothelial cell proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body WB Cre SQOR fl/fl knockout mice exhibit lower mass and reduced angiogenesis compared to SQOR fl/fl controls. WB Cre SQOR fl/fl mice also exhibit reduced muscle angiogenesis following femoral artery ligation, compared to controls. Collectively, our data reveal the molecular intersections between H 2 S, O 2 and NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization. Highlights: Hypoxic induction of •NO in endothelial cells inhibits CBS and switches CTH reaction specificity Hypoxic interruption of the canonical transsulfuration pathway promotes H 2 S synthesis Synergizing with hypoxia, SQOR deficiency induces a reductive shift in the ETC and restricts proliferationSQOR KO mice exhibit lower neovascularization in tumor xenograft and hind limb ischemia models.

12.
bioRxiv ; 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36993714

ABSTRACT

Somatic cell fate is an outcome set by the activities of specific transcription factors and the chromatin landscape and is maintained by gene silencing of alternate cell fates through physical interactions with the nuclear scaffold. Here, we evaluate the role of the nuclear scaffold as a guardian of cell fate in human fibroblasts by comparing the effects of transient loss (knockdown) and mutation (progeria) of functional Lamin A/C, a core component of the nuclear scaffold. We observed that Lamin A/C deficiency or mutation disrupts nuclear morphology, heterochromatin levels, and increases access to DNA in lamina-associated domains. Changes in Lamin A/C were also found to impact the mechanical properties of the nucleus when measured by a microfluidic cellular squeezing device. We also show that transient loss of Lamin A/C accelerates the kinetics of cellular reprogramming to pluripotency through opening of previously silenced heterochromatin domains while genetic mutation of Lamin A/C into progerin induces a senescent phenotype that inhibits the induction of reprogramming genes. Our results highlight the physical role of the nuclear scaffold in safeguarding cellular fate.

13.
Front Cell Dev Biol ; 11: 1106653, 2023.
Article in English | MEDLINE | ID: mdl-36776562

ABSTRACT

Collective cell migration is critical for proper embryonic development, wound healing, and cancer cell invasion. However, much of our knowledge of cell migration has been performed using flat surfaces that lack topographical features and do not recapitulate the complex fibrous architecture of the extracellular matrix (ECM). The recent availability of synthetic fibrous networks designed to mimic in vivo ECM has been key to identify the topological features that dictate cell migration patterns as well as to determine the underlying mechanisms that regulate topography-sensing. Recent studies have underscored the prevalence of collective cell migration during cancer invasion, and these observations present a compelling need to understand the mechanisms controlling contact guidance within migratory, multicellular groups. Therefore, we designed an integrated migration analysis platform combining tunable electrospun fibers that recapitulate aspects of the biophysical properties of the ECM, and computational approaches to investigate collective cell migration. To quantitatively assess migration as a function of matrix topography, we developed an automated MATLAB code that quantifies cell migration dynamics, including speed, directionality, and the number of detached cells. This platform enables live cell imaging while providing enough cells for biochemical, proteomic, and genomic analyses, making our system highly adaptable to multiple experimental investigations.

14.
Acta Biomater ; 163: 378-391, 2023 06.
Article in English | MEDLINE | ID: mdl-36179980

ABSTRACT

The peritumoral stroma is a complex 3D tissue that provides cells with myriad biophysical and biochemical cues. Histologic observations suggest that during metastatic spread of carcinomas, these cues influence transformed epithelial cells, prompting a diversity of migration modes spanning single cell and multicellular phenotypes. Purported consequences of these variations in tumor escape strategies include differential metastatic capability and therapy resistance. Therefore, understanding how cues from the peritumoral stromal microenvironment regulate migration mode has both prognostic and therapeutic value. Here, we utilize a synthetic stromal mimetic in which matrix fiber density and bulk hydrogel mechanics can be orthogonally tuned to investigate the contribution of these two key matrix attributes on MCF10A migration mode phenotypes, epithelial-mesenchymal transition (EMT), and invasive potential. We develop an automated computational image analysis framework to extract migratory phenotypes from fluorescent images and determine 3D migration metrics relevant to metastatic spread. Using this analysis, we find that matrix fiber density and bulk hydrogel mechanics distinctly contribute to a variety of MCF10A migration modes including amoeboid, single mesenchymal, clusters, and strands. We identify combinations of physical and soluble cues that induce a variety of migration modes originating from the same MCF10A spheroid and use these settings to examine a functional consequence of migration mode -resistance to apoptosis. We find that cells migrating as strands are more resistant to staurosporine-induced apoptosis than either disconnected clusters or individual invading cells. Improved models of the peritumoral stromal microenvironment and understanding of the relationships between matrix attributes and cell migration mode can aid ongoing efforts to identify effective cancer therapeutics that address cell plasticity-based therapy resistances. STATEMENT OF SIGNIFICANCE: Stromal extracellular matrix structure dictates both cell homeostasis and activation towards migratory phenotypes. However decoupling the effects of myriad biophysical cues has been difficult to achieve. Here, we encapsulate electrospun fiber segments within an amorphous hydrogel to create a fiber-reinforced hydrogel composite in which fiber density and hydrogel stiffness can be orthogonally tuned. Quantification of 3D cell migration reveal these two parameters uniquely contribute to a diversity of migration phenotypes spanning amoeboid, single mesenchymal, multicellular cluster, and collective strand. By tuning biophysical and biochemical cues to elicit heterogeneous migration phenotypes, we find that collective strands best resist apoptosis. This work establishes a composite approach to modulate fibrous topography and bulk hydrogel mechanics and identified biomaterial parameters to direct distinct 3D cell migration phenotypes.


Subject(s)
Hydrogels , Neoplasms , Humans , Hydrogels/pharmacology , Hydrogels/chemistry , Cell Movement , Biocompatible Materials/pharmacology , Epithelial Cells , Extracellular Matrix , Tumor Microenvironment
15.
Adv Funct Mater ; 33(40)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-38464762

ABSTRACT

Capillary scale vascularization is critical to the survival of engineered 3D tissues and remains an outstanding challenge for the field of tissue engineering. Current methods to generate micro-scale vasculature such as 3D printing, two photon hydrogel ablation, angiogenesis, and vasculogenic assembly face challenges in rapidly creating organized, highly vascularized tissues at capillary length-scales. Within metabolically demanding tissues, native capillary beds are highly organized and densely packed to achieve adequate delivery of nutrients and oxygen and efficient waste removal. Here, we adopt two existing techniques to fabricate lattices composed of sacrificial microfibers that can be efficiently and uniformly seeded with endothelial cells (ECs) by magnetizing both lattices and ECs. Ferromagnetic microparticles (FMPs) were incorporated into microfibers produced by solution electrowriting (SEW) and fiber electropulling (FEP). By loading ECs with superparamagnetic iron oxide nanoparticles (SPIONs), the cells could be seeded onto magnetized microfiber lattices. Following encapsulation in a hydrogel, the capillary templating lattice was selectively degraded by a bacterial lipase that does not impact mammalian cell viability or function. This work introduces a novel approach to rapidly producing organized capillary networks within metabolically demanding engineered tissue constructs which should have broad utility for the fields of tissue engineering and regenerative medicine.

16.
Sci Adv ; 8(51): eabq6152, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542719

ABSTRACT

Extracellular matrix (ECM) interactions regulate both the cell transcriptome and proteome, thereby determining cell fate. Traumatic heterotopic ossification (HO) is a disorder characterized by aberrant mesenchymal lineage (MLin) cell differentiation, forming bone within soft tissues of the musculoskeletal system following traumatic injury. Recent work has shown that HO is influenced by ECM-MLin cell receptor signaling, but how ECM binding affects cellular outcomes remains unclear. Using time course transcriptomic and proteomic analyses, we identified discoidin domain receptor 2 (DDR2), a cell surface receptor for fibrillar collagen, as a key MLin cell regulator in HO formation. Inhibition of DDR2 signaling, through either constitutive or conditional Ddr2 deletion or pharmaceutical inhibition, reduced HO formation in mice. Mechanistically, DDR2 perturbation alters focal adhesion orientation and subsequent matrix organization, modulating Focal Adhesion Kinase (FAK) and Yes1 Associated Transcriptional Regulator and WW Domain Containing Transcription Regulator 1 (YAP/TAZ)-mediated MLin cell signaling. Hence, ECM-DDR2 interactions are critical in driving HO and could serve as a previously unknown therapeutic target for treating this disease process.


Subject(s)
Discoidin Domain Receptor 2 , Mice , Animals , Discoidin Domain Receptor 2/genetics , Proteomics , Cell Differentiation/genetics , Extracellular Matrix/metabolism , Signal Transduction/physiology
17.
Nat Mater ; 21(4): 390-397, 2022 04.
Article in English | MEDLINE | ID: mdl-35361951

ABSTRACT

Recent far-reaching advances in synthetic biology have yielded exciting tools for the creation of new materials. Conversely, advances in the fundamental understanding of soft-condensed matter, polymers and biomaterials offer new avenues to extend the reach of synthetic biology. The broad and exciting range of possible applications have substantial implications to address grand challenges in health, biotechnology and sustainability. Despite the potentially transformative impact that lies at the interface of synthetic biology and biomaterials, the two fields have, so far, progressed mostly separately. This Perspective provides a review of recent key advances in these two fields, and a roadmap for collaboration at the interface between the two communities. We highlight the near-term applications of this interface to the development of hierarchically structured biomaterials, from bioinspired building blocks to 'living' materials that sense and respond based on the reciprocal interactions between materials and embedded cells.


Subject(s)
Biocompatible Materials , Synthetic Biology , Polymers
18.
Adv Sci (Weinh) ; 9(12): e2105325, 2022 04.
Article in English | MEDLINE | ID: mdl-35187856

ABSTRACT

While matrix stiffness regulates cell behavior on 2D substrates, recent studies using synthetic hydrogels have suggested that in 3D environments, cell behavior is primarily impacted by matrix degradability, independent of stiffness. However, these studies did not consider the potential impact of other confounding matrix parameters that typically covary with changes in stiffness, particularly, hydrogel swelling and hydrolytic stability, which may explain the previously observed distinctions in cell response in 2D versus 3D settings. To investigate how cells sense matrix stiffness in 3D environments, a nonswelling, hydrolytically stable, linearly elastic synthetic hydrogel model is developed in which matrix stiffness and degradability can be tuned independently. It is found that matrix degradability regulates cell spreading kinetics, while matrix stiffness dictates the final spread area once cells achieve equilibrium spreading. Importantly, the differentiation of human mesenchymal stromal cells toward adipocytes or osteoblasts is regulated by the spread state of progenitor cells upon initiating differentiation. These studies uncover matrix stiffness as a major regulator of cell function not just in 2D, but also in 3D environments, and identify matrix degradability as a critical microenvironmental feature in 3D that in conjunction with matrix stiffness dictates cell spreading, cytoskeletal state, and stem cell differentiation outcomes.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Cell Differentiation , Extracellular Matrix , Humans
19.
Bioprinting ; 252022 Mar.
Article in English | MEDLINE | ID: mdl-35087958

ABSTRACT

Acoustically-responsive scaffolds (ARSs) are composite hydrogels that respond to ultrasound in an on-demand, spatiotemporally-controlled manner due to the presence of a phase-shift emulsion. When exposed to ultrasound, a gas bubble is formed within each emulsion droplet via a mechanism termed acoustic droplet vaporization (ADV). In previous in vitro and in vivo studies, we demonstrated that ADV can control regenerative processes by releasing growth factors and/or modulating micromechanics in ARSs. Precise, spatial patterning of emulsion within an ARS could be beneficial for ADV-induced modulation of biochemical and biophysical cues. However, precise patterning is limited using conventional bulk polymerization techniques. Here, we developed an extrusion-based method for bioprinting ARSs with micropatterned structures. Emulsions were loaded within bioink formulations containing fibrin, hyaluronic acid and/or alginate. Experimental as well as theoretical studies elucidated the interrelations between printing parameters, needle geometry, rheological properties of the bioink, and the process-induced mechanical stresses during bioprinting. The shear thinning properties of the bioinks enabled use of lower extrusion pressures resulting in decreased shear stresses and shorter residence times, thereby facilitating high viability for cell-loaded bioinks. Bioprinting yielded greater alignment of fibrin fibers in ARSs compared to conventionally polymerized ARSs. Bioprinted ARSs also enabled generation of ADV at high spatial resolutions, which were otherwise not achievable in conventional ARSs, and acoustically-driven collapse of ADV-induced bubbles. Overall, bioprinting could aid in optimizing ARSs for therapeutic applications.

20.
Acta Biomater ; 138: 133-143, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34808418

ABSTRACT

Hydrogels are often used to study the impact of biomechanical and topographical cues on cell behavior. Conventional hydrogels are designed a priori, with characteristics that cannot be dynamically changed in an externally controlled, user-defined manner. We developed a composite hydrogel, termed an acoustically-responsive scaffold (ARS), that enables non-invasive, spatiotemporally controlled modulation of mechanical and morphological properties using focused ultrasound. An ARS consists of a phase-shift emulsion distributed in a fibrin matrix. Ultrasound non-thermally vaporizes the emulsion into bubbles, which induces localized, radial compaction and stiffening of the fibrin matrix. In this in vitro study, we investigate how this mechanism can control the differentiation of fibroblasts into myofibroblasts, a transition correlated with substrate stiffness on 2D substrates. Matrix compaction and stiffening was shown to be highly localized using confocal and atomic force microscopies, respectively. Myofibroblast phenotype, evaluated by α-smooth muscle actin (α-SMA) immunocytochemistry, significantly increased in matrix regions proximal to bubbles compared to distal regions, irrespective of the addition of exogenous transforming growth factor-ß1 (TGF-ß1). Introduction of the TGF-ß1 receptor inhibitor SB431542 abrogated the proximal enhancement. This approach providing spatiotemporal control over biophysical signals and resulting cell behavior could aid in better understanding fibrotic disease progression and the development of therapeutic interventions for chronic wounds. STATEMENT OF SIGNIFICANCE: Hydrogels are used in cell culture to recapitulate both biochemical and biophysical aspects of the native extracellular matrix. Biophysical cues like stiffness can impact cell behavior. However, with conventional hydrogels, there is a limited ability to actively modulate stiffness after polymerization. We have developed an ultrasound-based method of spatiotemporally-controlling mechanical and morphological properties within a composite hydrogel, termed an acoustically-responsive scaffold (ARS). Upon exposure to ultrasound, bubbles are non-thermally generated within the fibrin matrix of an ARS, thereby locally compacting and stiffening the matrix. We demonstrate how ARSs control the differentiation of fibroblasts into myofibroblasts in 2D. This approach could assist with the study of fibrosis and the development of therapies for chronic wounds.


Subject(s)
Fibrin , Myofibroblasts , Cell Differentiation , Extracellular Matrix , Fibroblasts , Hydrogels/pharmacology , Transforming Growth Factor beta1
SELECTION OF CITATIONS
SEARCH DETAIL
...