Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cardiol Young ; 34(4): 815-821, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37850440

ABSTRACT

OBJECTIVE: CHD is known to be associated with increased risk for neurodevelopmental disorders. The combination of CHD with neurodevelopmental disorders and/or extra-cardiac anomalies increases the chance for an underlying genetic diagnosis. Over the last 15 years, there has been a dramatic increase in the use of broad-scale genetic testing. We sought to determine if neurodevelopmental disorders in children with single-ventricle CHD born prior to the genetic testing revolution are associated with genetic diagnosis. METHODS: We identified 74 5-12-year-old patients with single-ventricle CHD post-Fontan procedure. We retrospectively evaluated genetic testing performed and neurodevelopmental status of these patients. RESULTS: In this cohort, there was an overall higher rate of neurodevelopmental disorders (80%) compared to the literature (50%). More of the younger (5-7-year-old) patients were seen by genetic counsellors compared to the older (8-12-year-old) cohort (46% versus 19% p value = 0.01). In the younger cohort, the average age of initial consultation was 7.7 days compared to 251 days in the older cohort. The overall rate of achieving a molecular diagnosis was 12% and 8% in the younger and older cohorts, respectively; however, the vast majority of did not have broad genetic testing. CONCLUSION: The minority of patients in our cohort achieved a genetic diagnosis. Given a large increase in the number of genes associated with monogenic CHD and neurodevelopmental disorders in the last decade, comprehensive testing and consultation with clinical genetics should be considered in this age range, since current testing standards did not exist during their infancy.


Subject(s)
Heart Defects, Congenital , Neurodevelopmental Disorders , Univentricular Heart , Child , Humans , Infant, Newborn , Child, Preschool , Retrospective Studies , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/complications , Neurodevelopmental Disorders/epidemiology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/complications , Univentricular Heart/complications , Phenotype , Genotype
2.
Semin Fetal Neonatal Med ; 28(5): 101487, 2023 10.
Article in English | MEDLINE | ID: mdl-38008598

ABSTRACT

'Apnoeic oxygenation' describes the diffusion of oxygen across the alveolar-capillary interface in the absence of tidal respiration. Apnoeic oxygenation requires a patent airway, the diffusion of oxygen to the alveoli, and cardiopulmonary circulation. Apnoeic oxygenation has varied applications in adult medicine including facilitating tubeless anaesthesia or improving oxygenation when a difficult airway is known or anticipated. In the paediatric population, apnoeic oxygenation prolongs the time to oxygen desaturation, facilitating intubation. This application has gained attention in neonatal intensive care where intubation remains a challenging procedure. Difficulties are related to the infant's size and decreased respiratory reserve. In addition, policy changes have led to limited opportunities for operators to gain proficiency. Until recently, evidence of benefit of apnoeic oxygenation in the neonatal population came from a small number of infants recruited to paediatric studies. Evidence specific to neonates is emerging and suggests apnoeic oxygenation may increase intubation success and limit physiological instability during the procedure. The best way to deliver oxygen to facilitate apnoeic oxygenation remains an important question.


Subject(s)
Lung , Respiration, Artificial , Adult , Infant , Infant, Newborn , Humans , Child , Respiration, Artificial/methods , Oxygen , Oxygen Inhalation Therapy , Intubation, Intratracheal/methods
3.
Mol Genet Genomics ; 298(5): 1185-1199, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37340120

ABSTRACT

RNA sequencing (RNA-seq) is a complementary diagnostic tool to exome sequencing (ES), only recently clinically available to undiagnosed patients post-ES, that provides functional information on variants of unknown significance (VUS) by evaluating its effect on RNA transcription. ES became clinically available in the early 2010s and promised an agnostic platform for patients with a neurological disease, especially for those who believed to have a genetic etiology. However, the massive data generated by ES pose challenges in variant interpretation, especially for rare missense, synonymous, and deep intronic variants that may have a splicing effect. Without functional study and/or family segregation analysis, these rare variants would be likely interpreted as VUS which is difficult for clinicians to use in clinical care. Clinicians are able to assess the VUS for phenotypic overlap, but this additional information alone is usually not enough to re-classify a variant. Here, we report a case of a 14-month-old male who presented to clinic with a history of seizures, nystagmus, cerebral palsy, oral aversion, global developmental delay, and poor weight gain requiring gastric tube placement. ES revealed a previously unreported homozygous missense VUS, c.7406A > G p.(Asn2469Ser), in VPS13D. This variant has not been previously reported in genome aggregation database (gnomAD), ClinVar, or in any peer-reviewed published literature. By RNA-seq, we demonstrated that this variant mainly impacts splicing and results in a frameshift and early termination. It is expected to generate either a truncated protein, p.(Val2468fs*19), or no protein from this transcript due to nonsense-mediated mRNA decay leading to VPS13D deficiency. To our knowledge, this is the first case utilizing RNA-seq to further functionally characterize a homozygous novel missense VUS in VPS13D and confirm its impact on splicing. This confirmed pathogenicity gave the diagnosis of VPS13D movement disorder to this patient. Therefore, clinicians should consider utilizing RNA-seq to clarify VUS by evaluating its effect on RNA transcription.


Subject(s)
Movement Disorders , RNA , Humans , Male , Infant , Exome Sequencing , Mutation , Sequence Analysis, RNA , Proteins
4.
Am J Med Genet A ; 191(6): 1646-1651, 2023 06.
Article in English | MEDLINE | ID: mdl-36965156

ABSTRACT

Ryanodine receptor type 1-related disorder (RYR1-RD) is the most common subgroup of congenital myopathies with a wide phenotypic spectrum ranging from mild hypotonia to lethal fetal akinesia. Genetic testing for myopathies is imperative as the diagnosis informs counseling regarding prognosis and recurrence risk, treatment options, monitoring, and clinical management. However, diagnostic challenges exist as current options are limited to clinical suspicion prompting testing including: single gene sequencing or familial variant testing, multi-gene panels, exome, genome sequencing, and invasive testing including muscle biopsy. The timing of diagnosis is of great importance due to the association of RYR1-RD with malignant hyperthermia (MH). MH is a hypermetabolic crisis that occurs secondary to excessive calcium release in muscles, leading to systemic effects that can progress to shock and death if unrecognized. Given the association of MH with pathogenic variants in RYR1, a diagnosis of RYR1-RD necessitates an awareness of medical team to avoid potentially triggering agents. We describe a case of a unique fetal presentation with bilateral diaphragmatic eventrations who had respiratory failure, dysmorphic facial features, and profound global hypotonia in the neonatal period. The diagnosis was made at several months of age, had direct implications on her clinical care related to anticipated need to long-term ventilator support, and ultimately death secondary an arrhythmia as a result of suspected MH. Our report reinforces the importance of having high suspicion for a genetic syndrome and pursuing early, rapid exome or genome sequencing as first line testing in critically ill neonatal intensive care unit patients and further evaluating the pathogenicity of a variant of uncertain significance in the setting of a myopathic phenotype.


Subject(s)
Malignant Hyperthermia , Myopathy, Central Core , Female , Humans , Pregnancy , Myopathy, Central Core/diagnosis , Myopathy, Central Core/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Muscle Hypotonia , Chromosome Mapping , Labor Presentation , Malignant Hyperthermia/diagnosis , Malignant Hyperthermia/genetics , Mutation
5.
Am J Med Genet A ; 191(2): 526-539, 2023 02.
Article in English | MEDLINE | ID: mdl-36433683

ABSTRACT

Deletion of 17p13.3 has varying degrees of severity on brain development based on precise location and size of the deletion. The most severe phenotype is Miller-Dieker syndrome (MDS) which is characterized by lissencephaly, dysmorphic facial features, growth failure, developmental disability, and often early death. Haploinsufficiency of PAFAH1B1 is responsible for the characteristic lissencephaly in MDS. The precise role of YWHAE haploinsufficiency in MDS is unclear. Case reports are beginning to elucidate the phenotypes of individuals with 17p13.3 deletions that have deletion of YWHAE but do not include deletion of PAFAH1B1. Through our clinical genetics practice, we identified four individuals with 17p13.3 deletion that include YWHAE but not PAFAH1B1. These patients have a similar phenotype of dysmorphic facial features, developmental delay, and leukoencephalopathy. In a review of the literature, we identified 19 patients with 17p13.3 microdeletion sparing PAFAH1B1 but deleting YWHAE. Haploinsufficiency of YWHAE is associated with brain abnormalities including cystic changes. These individuals have high frequency of epilepsy, intellectual disability, and dysmorphic facial features including prominent forehead, epicanthal folds, and broad nasal root. We conclude that deletion of 17p13.3 excluding PAFAH1B1 but including YWHAE is associated with a consistent phenotype and should be considered a distinct condition from MDS.


Subject(s)
Classical Lissencephalies and Subcortical Band Heterotopias , Intellectual Disability , Lissencephaly , Humans , Classical Lissencephalies and Subcortical Band Heterotopias/genetics , Chromosome Deletion , Lissencephaly/genetics , Phenotype , Intellectual Disability/genetics , Chromosomes, Human, Pair 17/genetics , Brain , 14-3-3 Proteins/genetics
6.
Am J Med Genet A ; 188(11): 3262-3277, 2022 11.
Article in English | MEDLINE | ID: mdl-36209351

ABSTRACT

Protein phosphatase 2A (PP2A) is a heterotrimeric serine/threonine phosphatase that regulates numerous biological processes. PPP2R1A encodes the scaffolding "Aα" subunit of PP2A. To date, nearly 40 patients have been previously reported with 19 different pathogenic PPP2R1A variants, with phenotypes including intellectual disability, developmental delay, epilepsy, infant agenesis/dysgenesis of the corpus callosum, and dysmorphic features. Apart from a single case, severe congenital heart defects (CHD) have not been described. We report four new unrelated individuals with pathogenic heterozygous PPP2R1A variants and CHD and model the crystal structure of several variants to investigate mechanisms of phenotype disparity. Individuals 1 and 2 have a previously described variant (c.548G>A, p.R183Q) and similar phenotypes with severe ventriculomegaly, agenesis/dysgenesis of the corpus callosum, and severe CHD. Individual 3 also has a recurrent variant (c.544C>T, p.R182W) and presented with agenesis of corpus callosum, ventriculomegaly, mild pulmonic stenosis, and small patent foramen ovale. Individual 4 has a novel variant (c.536C>A, p.P179H), ventriculomegaly, and atrial septal defect. To conclude, we propose expansion of the phenotype of PPP2R1A neurodevelopmental disorder to include CHD. Further, the R183Q variant has now been described in three individuals, all with severe neurologic abnormalities, severe CHD, and early death suggesting that this variant may be particularly deleterious.


Subject(s)
Heart Defects, Congenital , Hydrocephalus , Nervous System Malformations , Neurodevelopmental Disorders , Heart Defects, Congenital/complications , Heart Defects, Congenital/genetics , Humans , Neurodevelopmental Disorders/genetics , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Serine , Transcription Factors
7.
Front Genet ; 13: 887698, 2022.
Article in English | MEDLINE | ID: mdl-35937981

ABSTRACT

Exome sequencing (ES) became clinically available in 2011 and promised an agnostic, unbiased next-generation sequencing (NGS) platform for patients with symptoms believed to have a genetic etiology. The diagnostic yield of ES has been estimated to be between 25-40% and may be higher in specific clinical scenarios. Those who remain undiagnosed may have no molecular findings of interest on ES, variants of uncertain significance in genes that are linked to human disease, or variants of uncertain significance in candidate genes that are not definitively tied to human disease. Recent evidence suggests that a post-exome evaluation consisting of clinical re-phenotyping, functional studies of candidate variants in known genes, and variant reevaluation can lead to a diagnosis in 5-15% of additional cases. In this brief research study, we present our experience on post-exome evaluations in a cohort of patients who are believed to have a genetic etiology for their symptoms. We have reached a full or partial diagnosis in approximately 18% (6/33) of cases that have completed evaluations to date. We accomplished this by utilizing NGS-based methods that are available on a clinical basis. A sample of these cases highlights the utility of ES reanalysis with updated phenotyping allowing for the discovery of new genes, re-adjudication of known variants, incorporating updated phenotypic information, utilizing functional testing such as targeted RNA sequencing, and deploying other NGS-based testing methods such as gene panels and genome sequencing to reach a diagnosis.

8.
Cytotherapy ; 24(8): 774-788, 2022 08.
Article in English | MEDLINE | ID: mdl-35613962

ABSTRACT

The ISCT Scientific Signature Series Symposium "Advances in Cell and Gene Therapies for Lung Diseases and Critical Illnesses" was held as an independent symposium in conjunction with the biennial meeting, "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases," which took place July 12-15, 2021, at the University of Vermont. This is the third Respiratory System-based Signature Series event; the first 2, "Tracheal Bioengineering, the Next Steps" and "Cellular Therapies for Pulmonary Diseases and Critical Illnesses: State of the Art of European Science," took place in 2014 and 2015, respectively. Cell- and gene-based therapies for respiratory diseases and critical illnesses continue to be a source of great promise and opportunity. This reflects ongoing advancements in understanding of the mechanisms by which cell-based therapies, particularly those using mesenchymal stromal cells (MSCs), can mitigate different lung injuries and the increasing sophistication with which preclinical data is translated into clinical investigations. This also reflects continuing evolution in gene transfer vectors, including those designed for in situ gene editing in parallel with those targeting gene or cell replacement. Therefore, this symposium convened global thought leaders in a forum designed to catalyze communication and collaboration to bring the greatest possible innovation and value of cell- and gene-based therapies for patients with respiratory diseases and critical illnesses.


Subject(s)
Critical Illness , Lung Diseases , Cell- and Tissue-Based Therapy , Critical Illness/therapy , Genetic Therapy , Humans , Lung Diseases/genetics , Lung Diseases/therapy , Stem Cells
9.
Mol Cytogenet ; 15(1): 10, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35248119

ABSTRACT

BACKGROUND: Unbalanced translocations may be de novo or inherited from one parent carrying the balanced form and are usually present in all cells. Mosaic unbalanced translocations are extremely rare with a highly variable phenotype depending on the tissue distribution and level of mosaicism. Mosaicism for structural chromosomal abnormalities is clinically challenging for diagnosis and counseling due to the limitation of technical platforms and complex mechanisms, respectively. Here we report a case with a tremendously rare maternally-derived mosaic unbalanced translocation of t(3;12), and we illustrate the unreported complicated mechanism using single nucleotide polymorphism (SNP) array, fluorescence in situ hybridization (FISH), and chromosome analyses. CASE PRESENTATION: An 18-year-old female with a history of microcephaly, pervasive developmental disorder, intellectual disability, sensory integration disorder, gastroparesis, and hypotonia presented to our genetics clinic. She had negative karyotype by parental report but no other genetic testing performed previously. SNP microarray analysis revealed a complex genotype including 8.4 Mb terminal mosaic duplication on chromosome 3 (3p26.3->3p26.1) with the distal 5.7 Mb involving two parental haplotypes and the proximal 2.7 Mb involving three parental haplotypes, and a 6.1 Mb terminal mosaic deletion on chromosome 12 (12p13.33->12p13.31) with no evidence for a second haplotype. Adjacent to the mosaic deletion is an interstitial mosaic copy-neutral region of homozygosity (1.9 Mb, 12p13.31). The mother of this individual was confirmed by chromosome analysis and FISH that she carries a balanced translocation, t(3;12)(p26.1;p13.31). CONCLUSION: Taken together, the proband, when at the stage of a zygote, likely carried the derivative chromosome 12 from this translocation, and a postzygotic mitotic recombination event occurred between the normal paternal chromosome 12 and maternal derivative chromosome 12 to "correct" the partial 3p trisomy and partial deletion of 12p. To the best of our knowledge, it is the first time to report the mechanism utilizing a combined cytogenetic and cytogenomic approach, and we believe it expands our knowledge of mosaic structural chromosomal disorders and provides new insight into clinical management and genetic counseling.

10.
Stem Cells Transl Med ; 10(5): 773-780, 2021 05.
Article in English | MEDLINE | ID: mdl-33405397

ABSTRACT

Cell therapies for neonatal morbidities are progressing to early phase clinical trials. However, protocols for intravenous (IV) delivery of cell therapies to infants have not been evaluated. It has been assumed the cell dose prescribed is the dose delivered. Early in our clinical trial of human amnion epithelial cells (hAECs), we observed cells settling in the syringe and IV tubing used to deliver the suspension. The effect on dose delivery was unknown. We aimed to quantify this observation and determine an optimal protocol for IV delivery of hAECs to extremely preterm infants. A standard pediatric infusion protocol was modeled in the laboratory. A syringe pump delivered the hAEC suspension over 60 minutes via a pediatric blood transfusion set (200-µm filter and 2.2 mL IV line). The infusion protocol was varied by agitation methods, IV-line volumes (0.2-2.2 mL), albumin concentrations (2% vs 4%), and syringe orientations (horizontal vs vertical) to assess whether these variables influenced the dose delivered. The influence of flow rate (3-15 mL/h) was assessed after other variables were optimized. The standard infusion protocol delivered 17.6% ± 9% of the intended hAEC dose. Increasing albumin concentration to 4%, positioning the syringe and IV line vertically, and decreasing IV-line volume to 0.6 mL delivered 99.7% ± 13% of the intended hAEC dose. Flow rate did not affect dose delivery. Cell therapy infusion protocols must be considered. We describe the refinement of a cell infusion protocol that delivers intended cell doses and could form the basis of future neonatal cell delivery protocols.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Epithelial Cells/transplantation , Infant, Premature , Albumins , Amnion/cytology , Humans , Infant, Newborn , Infusions, Intravenous , Syringes
12.
Arch Dis Child Fetal Neonatal Ed ; 105(5): 563-568, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32253200

ABSTRACT

Recent decades have seen the rapid progress of neonatal intensive care, and the survival rates of the most preterm infants are improving. This improvement is associated with changing patterns of morbidity and new phenotypes of bronchopulmonary dysplasia and preterm brain injury are recognised. Inflammation and immaturity are known contributors to their pathogenesis. However, a new phenomenon, the exhaustion of progenitor cells is emerging as an important factor. Current therapeutic approaches do not adequately address these new mechanisms of injury. Cell therapy, that is the use of stem and stem-like cells, with its potential to both repair and prevent injury, offers a new approach to these challenging conditions. This review will examine the rationale for cell therapy in the extremely preterm infant, the preclinical and early clinical evidence to support its use in bronchopulmonary dysplasia and preterm brain injury. Finally, it will address the challenges in translating cell therapy from the laboratory to early clinical trials.


Subject(s)
Brain Injuries/therapy , Bronchopulmonary Dysplasia/therapy , Cell Transplantation/methods , Infant, Extremely Premature , Infant, Premature, Diseases/therapy , Animals , Cell Transplantation/adverse effects , Clinical Protocols , Clinical Trials as Topic , Cord Blood Stem Cell Transplantation/adverse effects , Cord Blood Stem Cell Transplantation/methods , Fetal Blood , Humans , Infant, Newborn , Infant, Very Low Birth Weight , Intensive Care, Neonatal/methods , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Time Factors
13.
Psychiatry Res ; 166(2-3): 158-65, 2009 Apr 30.
Article in English | MEDLINE | ID: mdl-19278735

ABSTRACT

Sex differences are pervasive in schizophrenia, ranging from differences in the age of onset and symptoms of the illness to structural brain differences. Yet, there has been very little research on the interaction of these differences with established cognitive sex differences that exist in healthy populations. We tested 25 patients with schizophrenia and 17 healthy controls on a two-dimensional task of object location memory. It has been previously shown that healthy females outperform healthy males on this task, a result that was upheld in this experiment. However, the female advantage is completely absent in patients with schizophrenia. This finding has important implications for the interpretation of clinical and physiological sex differences present in schizophrenia.


Subject(s)
Memory , Orientation , Pattern Recognition, Visual , Recognition, Psychology , Schizophrenia , Space Perception , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Psychiatric Status Rating Scales , Psychomotor Performance , Psychotic Disorders/diagnosis , Psychotic Disorders/psychology , Schizophrenia/diagnosis , Schizophrenia/physiopathology , Sex Factors
14.
Cyberpsychol Behav ; 9(2): 224-9, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16640484

ABSTRACT

Medication compliance is essential to treating the symptoms of schizophrenia effectively. This study utilized a virtual reality (VR) apartment paradigm to assess medication compliance behaviors in 25 patients with schizophrenia and in 16 healthy control subjects. Participants were assigned a prescription consisting of three medications and were asked to self-administer this regimen in 15 min. Results demonstrate that patients had considerably more difficulty in complying with the medication regimen than did controls. They manifested significantly more quantitative errors, and were much less accurate in consuming the medications at the assigned time. Significant differences in performance between these groups were also evidenced by a variety of validated neuropsychological measures. Correlations between the data may suggest a convergent validity for this new VR task. Future research will investigate the validity of this task in predicting additional measures of psychosocial functioning.


Subject(s)
Computer Simulation , Patient Compliance/psychology , Schizophrenic Psychology , Self Administration/psychology , User-Computer Interface , Adult , Antipsychotic Agents/administration & dosage , Humans , Neuropsychological Tests , Patient Education as Topic , Predictive Value of Tests , Role Playing , Schizophrenia/drug therapy
15.
Appl Psychophysiol Biofeedback ; 30(3): 307-17, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16167193

ABSTRACT

Numerous studies have shown that the hippocampus is critical for spatial memory. Within nonhuman research, a task often used to assess spatial memory is the radial arm maze. Because of the spatial nature of this task, this maze is often used to assess the function of the hippocampus. Our goal was to extrapolate this task to humans and examine whether healthy undergraduates utilize their hippocampus while performing a virtual reality version of the radial arm maze task. Thirteen undergraduates performed a virtual radial arm maze during functional magnetic resonance imaging. The brain maps of activity reveal bilateral hippocampal BOLD signal changes during the performance of this task. However, paradoxically, this BOLD signal change decreases during the spatial memory component of the task. Additionally, we note frontal cortex activity reflective of working memory circuits. These data reveal that, as predicted by the rodent literature, the hippocampus is involved in performing the virtual radial arm maze in humans. Hence, this virtual reality version may be used to assess the integrity of hippocampus so as to predict risk or severity in a variety of psychiatric disorders.


Subject(s)
Hippocampus/physiology , Maze Learning , Memory , User-Computer Interface , Adolescent , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Mental Disorders , Space Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...