Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(27): 30787-30795, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32531150

ABSTRACT

An effective cross-linking technique allows a viscous and highly gas-permeable hydrophilic polyphosphazene to be cast as solid membrane films. By judicious blending with other polyphosphazenes to improve the mechanical properties, a membrane exhibiting the highest CO2 permeability (610 barrer) among polyphosphazenes combined with a good CO2/N2 selectivity (35) was synthesized and described here. The material demonstrates performance stability after 500 h of exposure to a coal-fired power plant flue gas, making it attractive for use in carbon capture applications. Its CO2/N2 selectivity under conditions up to full humidity is also stable, and although the gas permeability does decline, the performance is fully recovered upon drying. The high molecular weight of these heteropolymers also allows them to be cast as a thin selective layer on an asymmetric porous membrane, yielding a CO2 permeance of 1200 GPU and a CO2/N2 pure gas selectivity of 31, which does not decline over 2000 h. In addition to gas separation membranes, this cross-linked polyphosphazene can potentially be extended to other applications, such as drug delivery or proton exchange membranes, which take advantage of the polyphosphazene's versatile chemistry.

2.
ACS Appl Mater Interfaces ; 8(14): 9327-34, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27044063

ABSTRACT

Carbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored. By characterizing the mechanical and electrical properties of multiwalled carbon nanotube (MWCNT) sheets with different functional groups and irradiation doses, we can expand our insights into the extent of the trade-off that exists between mechanical strength and electrical conductivity for commercially available CNT sheets. Such insights allow for the optimization of design pathways for engineering applications that require a balance of material property enhancements.

3.
ACS Appl Mater Interfaces ; 6(9): 6120-6, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24720450

ABSTRACT

The inherent strength of individual carbon nanotubes (CNTs) offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of CNT forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated into that of sheets and yarns, where the bulk material strength is limited by intertube electrostatic attractions and slippage. The focus of this work was to assess postprocessing of CNT sheets and yarns to improve the macro-scale strength of these material forms. Both small-molecule functionalization and electron-beam irradiation were evaluated as means to enhance the tensile strength and Young's modulus of the bulk CNT materials. Mechanical testing revealed a 57% increase in tensile strength of CNT sheets upon functionalization compared with unfunctionalized sheets, while an additional 48% increase in tensile strength was observed when functionalized sheets were irradiated. Similarly, small-molecule functionalization increased tensile strength of yarn by up to 25%, whereas irradiation of the functionalized yarns pushed the tensile strength to 88% beyond that of the baseline yarn.

SELECTION OF CITATIONS
SEARCH DETAIL
...