Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 12(3): 1046-1051, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33470818

ABSTRACT

Half-Heusler thermoelectric materials are potential candidates for high thermoelectric efficiency. We report high-pressure thermoelectric and structural property measurements, density functional theory calculations on the half-Heusler material TiNiSn, and an increase of 15% in the relative dimensionless figure of merit, ZT, around 3 GPa. Thermal and electrical properties were measured utilizing a specialized sample cell assembly designed for the Paris-Edinburgh large-volume press to a maximum pressure of 3.5 GPa. High-pressure structural measurements performed up to 50 GPa in a diamond-anvil cell indicated the emergence of a new high-pressure phase around 20 GPa. A first-principles structure search performed using an ab initio random structure search approach identified the high-pressure phase as an orthorhombic type, in good agreement with the experimental results.

2.
Rev Sci Instrum ; 90(8): 083108, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472666

ABSTRACT

The simple working principles and versatility of the hydrothermal diamond-anvil cell (HDAC) make it highly useful for synchrotron x-ray studies of aqueous and fluid samples at high pressure-temperature (P-T) conditions. However, safety concerns need to be overcome in order to use the HDAC for synchrotron studies of aqueous radioactive samples at high temperatures and pressures. For accomplishment of such hydrothermal experiments of radioactive materials at synchrotron beamlines, the samples are required to be enclosed in a containment system employing three independent layers of airtight sealing at some synchrotron facilities while enabling access to the sample using several experimental probes, including incoming and outgoing x-rays. In this article, we report the design and implementation of a complete radiological safety enclosure system for an HDAC specialized for high P-T x-ray absorption spectroscopy (XAS) measurements of aqueous solutions containing the actinides at synchrotron beamlines. The enclosure system was successfully tested for XAS experiments using the HDAC with aqueous samples containing depleted uranium at temperatures ranging from 25 to 500 °C and pressures ranging from vapor pressure to 350 MPa.

SELECTION OF CITATIONS
SEARCH DETAIL
...