Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Genet Med ; 25(7): 100861, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37087635

ABSTRACT

PURPOSE: This study aimed to establish variants in CBX1, encoding heterochromatin protein 1ß (HP1ß), as a cause of a novel syndromic neurodevelopmental disorder. METHODS: Patients with CBX1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. To investigate the pathogenicity of identified variants, we performed in vitro cellular assays and neurobehavioral and cytological analyses of neuronal cells obtained from newly generated Cbx1 mutant mouse lines. RESULTS: In 3 unrelated individuals with developmental delay, hypotonia, and autistic features, we identified heterozygous de novo variants in CBX1. The identified variants were in the chromodomain, the functional domain of HP1ß, which mediates interactions with chromatin. Cbx1 chromodomain mutant mice displayed increased latency-to-peak response, suggesting the possibility of synaptic delay or myelination deficits. Cytological and chromatin immunoprecipitation experiments confirmed the reduction of mutant HP1ß binding to heterochromatin, whereas HP1ß interactome analysis demonstrated that the majority of HP1ß-interacting proteins remained unchanged between the wild-type and mutant HP1ß. CONCLUSION: These collective findings confirm the role of CBX1 in developmental disabilities through the disruption of HP1ß chromatin binding during neurocognitive development. Because HP1ß forms homodimers and heterodimers, mutant HP1ß likely sequesters wild-type HP1ß and other HP1 proteins, exerting dominant-negative effects.


Subject(s)
Chromobox Protein Homolog 5 , Heterochromatin , Animals , Mice , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Histones/genetics , Histones/metabolism
3.
Nature ; 610(7931): 319-326, 2022 10.
Article in English | MEDLINE | ID: mdl-36224417

ABSTRACT

Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease1-5. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.


Subject(s)
Neural Pathways , Organoids , Animals , Animals, Newborn , Autistic Disorder , Humans , Long QT Syndrome , Motivation , Neurons/physiology , Optogenetics , Organoids/cytology , Organoids/innervation , Organoids/transplantation , Rats , Reward , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Stem Cells/cytology , Syndactyly
4.
Adv Mater ; 34(24): e2109764, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35390209

ABSTRACT

Biofouling on the surface of implanted medical devices and biosensors severely hinders device functionality and drastically shortens device lifetime. Poly(ethylene glycol) and zwitterionic polymers are currently considered "gold-standard" device coatings to reduce biofouling. To discover novel anti-biofouling materials, a combinatorial library of polyacrylamide-based copolymer hydrogels is created, and their ability is screened to prevent fouling from serum and platelet-rich plasma in a high-throughput parallel assay. It is found that certain nonintuitive copolymer compositions exhibit superior anti-biofouling properties over current gold-standard materials, and machine learning is used to identify key molecular features underpinning their performance. For validation, the surfaces of electrochemical biosensors are coated with hydrogels and their anti-biofouling performance in vitro and in vivo in rodent models is evaluated. The copolymer hydrogels preserve device function and enable continuous measurements of a small-molecule drug in vivo better than gold-standard coatings. The novel methodology described enables the discovery of anti-biofouling materials that can extend the lifetime of real-time in vivo sensing devices.


Subject(s)
Biofouling , Biosensing Techniques , Acrylic Resins , Biofouling/prevention & control , Hydrogels/chemistry , Polymers/chemistry , Prostheses and Implants , Surface Properties
5.
AI Soc ; : 1-14, 2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35400854

ABSTRACT

Artificial intelligence (AI) is becoming part of our everyday experience and is expected to be ever more integrated into ordinary life for many years to come. Thus, it is important for those in product development, research, and public policy to understand how the public's perception of AI is shaped. In this study, we conducted focus groups and an online survey to determine the knowledge of AI held by the American public, and to judge whether entertainment media is a major influence on how Americans perceive AI. What we found is that the American public's knowledge of AI is patchy: some have a good understanding of what is and what is not AI, but many do not. When it came to understanding what AI can do, most respondents believe that AI could "replace human jobs" but few thought that it could "feel emotion." Most respondents were optimistic about the future and impact of AI, though about one third were not sure. Most respondents also did not think they could develop an emotional bond with or be comfortable being provided care by an AI. Regarding the influence of entertainment media on perceptions of AI, we found a significant relationship (p < 0.5) between people's beliefs about AI in entertainment media and their beliefs about AI in reality. Those who believe AI is realistically depicted in entertainment media were more likely to see AIs as potential emotional partners or apocalyptic robots than to imagine AIs taking over jobs or operating as surveillance tools.

6.
Health Phys ; 122(3): 452-462, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35100213

ABSTRACT

ABSTRACT: The application of ALARA (as low as reasonably achievable) principles to the design of new radiological facilities at Argonne National Laboratory provides a consistent radiation safety basis for future facility operations. This paper discusses the criteria for controlling radiation exposure and the techniques applied to meet those criteria for two new facilities. Argonne is a US Department of Energy (US DOE) laboratory, and the criteria are specified in the DOE Rule found at 10 CFR 835. The worst case radionuclides and their source strengths are chosen. Local shielding is specified to reduce dose rates to less than 50 µSv h-1at 30 cm from the shielding, thus avoiding the creation of a radiation area. Version 6 of the Los Alamos National Laboratory radiation transport code MCNP is then used to calculate the dose rates elsewhere. Based on the results of the calculations, design modifications are made to meet the design objectives criteria.


Subject(s)
Radiation Protection , Radiology , Laboratories , Radiation Dosage , Radiation Protection/methods , Radiography
7.
J Mol Diagn ; 24(3): 274-286, 2022 03.
Article in English | MEDLINE | ID: mdl-35065284

ABSTRACT

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.


Subject(s)
Exome , Pathology, Molecular , Child , Exome/genetics , Humans , Mutation , Rare Diseases/genetics , Retrospective Studies , Exome Sequencing/methods
8.
J Mol Diagn ; 24(2): 177-188, 2022 02.
Article in English | MEDLINE | ID: mdl-35074075

ABSTRACT

Exome reanalysis is useful for providing molecular diagnoses for previously uninformative samples. However, challenges exist in implementing a practical solution for clinicians and laboratories. This study complements the current literature by providing practical considerations for patient-level and cohort-level reanalyses. The Clinical and Laboratory Standards Institute assembled the Document Development Committee and an interpretation working group that developed the framework for reevaluation of exome-based data. We describe two distinct but complementary approaches toward exome reanalyses: clinician-initiated patient-level reanalysis, and laboratory-initiated cohort-level reanalysis. We highlight the advantages and constraints for both approaches, and provide a high-level conceptual guide for ordering clinicians and laboratories through the critical decision pathways. Because clinical exome sequencing continues to be the standard of care in genetics, exome reanalysis would be critical in increasing the overall diagnostic yield. A systematic guide will facilitate the efficient adoption of reevaluation of exome data for laboratories, health care professionals, genetic counselors, and clinicians.


Subject(s)
Clinical Laboratory Services , Exome , Exome/genetics , Humans , Laboratories , Laboratories, Clinical , Exome Sequencing
9.
Biodes Manuf ; 5(1): 133-140, 2022.
Article in English | MEDLINE | ID: mdl-34567825

ABSTRACT

Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients, and these shortages are especially devastating in developing countries. To help alleviate this strain, we have designed and tested the accessible low-barrier in vivo-validated economical ventilator (ALIVE Vent), a COVID-19-inspired, cost-effective, open-source, in vivo-validated solution made from commercially available components. The ALIVE Vent operates using compressed oxygen and air to drive inspiration, while two solenoid valves ensure one-way flow and precise cycle timing. The device was functionally tested and profiled using a variable resistance and compliance artificial lung and validated in anesthetized large animals. Our functional test results revealed its effective operation under a wide variety of ventilation conditions defined by the American Association of Respiratory Care guidelines for ventilator stockpiling. The large animal test showed that our ventilator performed similarly if not better than a standard ventilator in maintaining optimal ventilation status. The FiO2, respiratory rate, inspiratory to expiratory time ratio, positive-end expiratory pressure, and peak inspiratory pressure were successfully maintained within normal, clinically validated ranges, and the animals were recovered without any complications. In regions with limited access to ventilators, the ALIVE Vent can help alleviate shortages, and we have ensured that all used materials are publicly available. While this pandemic has elucidated enormous global inequalities in healthcare, innovative, cost-effective solutions aimed at reducing socio-economic barriers, such as the ALIVE Vent, can help enable access to prompt healthcare and life saving technology on a global scale and beyond COVID-19. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42242-021-00164-1.

10.
Mol Diagn Ther ; 25(5): 529-536, 2021 09.
Article in English | MEDLINE | ID: mdl-34283395

ABSTRACT

Novel gene-disease discoveries, rapid advancements in technology, and improved bioinformatics tools all have the potential to yield additional molecular diagnoses through the reanalysis of exome sequencing data. Collaborations between clinical laboratories, ordering physicians, and researchers are also driving factors that can contribute to these new insights. Automation in ongoing natural history collection, evolving phenotype updates, advancements in processing next-generation sequencing data, and up-to-date variant-gene-disease databases are increasingly needed for systematic exome reanalysis. Here, we review some of the advantages and challenges for clinician-initiated and laboratory-initiated exome reanalysis, and we propose a model for the future that could potentially maximize the clinical utility of exome reanalysis by integrating information from electronic medical records and knowledge databases into routine clinical workflows.


Subject(s)
Exome , Laboratories, Clinical , Computational Biology , Exome/genetics , Humans , Phenotype , Exome Sequencing
11.
Prenat Diagn ; 41(7): 817-822, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33974722

ABSTRACT

OBJECTIVE: The objective of this study was to describe molecular findings and phenotypic features among individuals referred for prenatal Beckwith-Wiedemann syndrome (BWS) testing. METHODS: Molecular diagnostic testing was performed using a sensitive quantitative real-time PCR-based assay capable of detecting mosaic methylation to the level of 3% at IC1 and IC2. Sanger sequencing of CDKN1C was performed in cases with normal methylation. RESULTS: Of the 94 patients tested, a molecular diagnosis was identified for 25.5% of cases; 70.9% of diagnosed cases had loss of methylation at IC2, 4.2% had gain of methylation at IC1, 12.5% had paternal uniparental isodisomy, and 12.5% had CDKN1C loss-of-function variants. Methylation level changes in prenatal cases were significantly greater than changes identified in cases tested after birth. Cases with a prenatal molecular diagnosis had a significantly greater number of BWS-associated phenotypic features. The presence of either macroglossia or placentomegaly was most predictive of a BWS diagnosis. CONCLUSION: Our results support the consensus statement advocating BWS molecular testing for all patients with one or more BWS-associated prenatal features and suggest that low-level mosaic methylation changes may be uncommon among prenatal BWS diagnoses.


Subject(s)
Beckwith-Wiedemann Syndrome/diagnosis , Cyclin-Dependent Kinase Inhibitor p57/analysis , Prenatal Diagnosis/methods , Adult , Cyclin-Dependent Kinase Inhibitor p57/isolation & purification , Female , Humans , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/statistics & numerical data , Pregnancy , Prenatal Diagnosis/trends
13.
Comp Med ; 71(1): 86-98, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33500020

ABSTRACT

Steroid-induced osteonecrosis of the femoral head (SONFH) is a condition documented in humans and animals exposed to chronic steroid administration. The rabbit has become a preferred animal model for investigating the pathogenesis and treatment of SONFH due to its shared femoral vascular anatomy with human patients, relative size of the femoral head, and general fecundity. However, morbidity and mortality are frequent during the steroid induction period, prior to surgical manipulation. These problems are poorly reported and inadequately described in the literature. In this study, we report the clinical, gross, and histopathologic findings of New Zealand white (NZW) rabbits undergoing the steroid induction phase of the SONFH model. Severe weight loss (>30%), lipemia, hypercholesterolemia, hyperglycemia, and elevations in ALT and AST were consistent findings across all rabbits, although these changes did not differentiate asymptomatic rabbits from those that became clinically symptomatic or died. Euthanized and spontaneously deceased rabbits exhibited hepatomegaly, hepatic lipidosis/glycogenosis, and hepatocellular necrosis, in addition to a lipid-rich and proteinaceous thoracic effusion. A subset of rabbits developed opportunistic pulmonary infections with Bordetella bronchiseptica and Escherichia coli and small intestine infections with Lawsonia intracellularis superimposed on hepatic and thoracic disease. Together, these findings allowed us to establish a clinical decision-making flowchart that reduced morbidities and mortalities in a subsequent cohort of SONFH rabbits. Recognition of these model-associated morbidities is critical for providing optimal clinical care during the disease induction phase of SONFH.


Subject(s)
Femur Head Necrosis , Femur Head , Animals , Disease Models, Animal , Femur Head Necrosis/chemically induced , Humans , Morbidity , Rabbits , Steroids
14.
J Med Genet ; 58(3): 178-184, 2021 03.
Article in English | MEDLINE | ID: mdl-32430359

ABSTRACT

BACKGROUND: Beckwith-Wiedemann Syndrome (BWS) is characterised by overgrowth and tumour predisposition. While multiple epigenetic and genetic mechanisms cause BWS, the majority are caused by methylation defects in imprinting control regions on chromosome 11p15.5. Disease-causing methylation defects are often mosaic within affected individuals. Phenotypic variability among individuals with chromosome 11p15.5 defects and tissue mosaicism led to the definition of the Beckwith-Wiedemann Spectrum (BWSp). Molecular diagnosis of BWSp requires use of multiple sensitive diagnostic techniques to reliably detect low-level aberrations. METHODS: Multimodal BWS diagnostic testing was performed on samples from 1057 individuals. Testing included use of a sensitive qRT-PCR-based quantitation method enabling identification of low-level mosaic disease, identification of CNVs within 11p15.5 via array comparative genomic hybridisation or qRT-PCR, and Sanger sequencing of CDKN1C. RESULTS: A molecular diagnosis was confirmed for 27.4% of individuals tested, of whom 43.4% had mosaic disease. The presence of a single cardinal feature was associated with a molecular diagnosis of BWSp in 20% of cases. Additionally, significant differences in the prevalence of mosaic disease among BWS molecular subtypes were identified. Finally, the diagnostic yield obtained by testing solid tissue samples from individuals with negative blood testing results shows improved molecular diagnosis. CONCLUSION: This study highlights the prevalence of mosaic disease among individuals with BWSp and the increases in diagnostic yield obtained via testing both blood and solid tissue samples from affected individuals. Additionally, the results establish the presence of a molecular diagnosis in individuals with very subtle features of BWSp.


Subject(s)
Beckwith-Wiedemann Syndrome/diagnosis , Cyclin-Dependent Kinase Inhibitor p57/genetics , Genomic Imprinting/genetics , Mosaicism , Adolescent , Adult , Beckwith-Wiedemann Syndrome/genetics , Beckwith-Wiedemann Syndrome/pathology , Child , Child, Preschool , Comparative Genomic Hybridization/methods , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Phenotype , Young Adult
15.
Emerg Med Australas ; 33(2): 331-342, 2021 04.
Article in English | MEDLINE | ID: mdl-33315310

ABSTRACT

OBJECTIVE: The aim of the present study was to describe the epidemiology and clinical features of patients presenting to the ED with suspected and confirmed COVID-19 during Australia's 'second wave'. METHODS: The COVID-19 ED (COVED) Project is an ongoing prospective cohort study in Australian EDs. This analysis presents data from 12 sites across four Australian states for the period from 1 July to 31 August 2020. All adult patients who met the criteria for 'suspected COVID-19' and underwent testing for SARS-CoV-2 in the ED were eligible for inclusion. Study outcomes included a positive SARS-CoV-2 test result, mechanical ventilation and in-hospital mortality. RESULTS: There were 106 136 presentations to the participating EDs and 12 055 (11.4%; 95% confidence interval [CI] 11.2-11.6) underwent testing for SARS-CoV-2. Of these, 255 (2%) patients returned a positive result. Among positive cases, 13 (5%) received mechanical ventilation during their hospital admission compared to 122 (2%) of the SARS-CoV-2 negative patients (odds ratio 2.7; 95% CI 1.5-4.9, P = 0.001). Nineteen (7%) SARS-CoV-2 positive patients died in hospital compared to 212 (3%) of the SARS-CoV-2 negative patients (odds ratio 2.3; 95% CI 1.4-3.7, P = 0.001). Strong clinical predictors of the SARS-CoV-2 test result included self-reported fever, sore throat, bilateral infiltrates on chest X-ray, and absence of a leucocytosis on first ED blood tests (P < 0.05). CONCLUSIONS: In this prospective multi-site study during Australia's 'second wave', a substantial proportion of ED presentations required SARS-CoV-2 testing and isolation. Presence of SARS-CoV-2 on nasopharyngeal swab was associated with an increase in the odds of death and mechanical ventilation in hospital.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , COVID-19/epidemiology , Emergency Service, Hospital , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Australia/epidemiology , COVID-19/mortality , Female , Humans , Male , Middle Aged , Pandemics , Patient Isolation , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Prospective Studies , Respiration, Artificial , SARS-CoV-2
16.
Eur J Med Genet ; 63(6): 103903, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32169557

ABSTRACT

Human imprinting disorders cause a range of dysmorphic and neurocognitive phenotypes, and they may elude traditional molecular diagnosis such exome sequencing. The discovery of novel disorders related to imprinted genes has lagged behind traditional Mendelian disorders because current diagnostic technology, especially unbiased testing, has limited utility in their discovery. To identify novel imprinting disorders, we reviewed data for every human gene hypothesized to be imprinted, identified each mouse ortholog, determined its imprinting status in the mouse, and analyzed its function in humans and mice. We identified 17 human genes that are imprinted in both humans and mice, and have functional data in mice or humans to suggest that dysregulated expression would lead to an abnormal phenotype in humans. These 17 genes, along with known imprinted genes, were preferentially flagged 538 clinical exome sequencing tests. The identified genes were: DIRAS3 [1p31.3], TP73 [1p36.32], SLC22A3 [6q25.3], GRB10 [7p12.1], DDC [7p12.2], MAGI2 [7q21.11], PEG10 [7q21.3], PPP1R9A [7q21.3], CALCR [7q21.3], DLGAP2 [8p23.3], GLIS3 [9p24.2], INPP5F [10q26.11], ANO1 [11q13.3], SLC38A4 [12q13.11], GATM [15q21.1], PEG3 [19q13.43], and NLRP2 [19q13.42]. In the 538 clinical cases, eight cases (1.7%) reported variants in a causative known imprinted gene. There were 367/758 variants (48.4%) in imprinted genes that were not known to cause disease, but none of those variants met the criteria for clinical reporting. Imprinted disorders play a significant role in human disease, and additional human imprinted disorders remain to be discovered. Therefore, evolutionary conservation is a potential tool to identify novel genes involved in human imprinting disorders and to identify them in clinical testing.


Subject(s)
Conserved Sequence , Exome , Genetic Diseases, Inborn/genetics , Genetic Loci , Genomic Imprinting , Animals , Databases, Genetic , Humans , Mice , Mutation , Whole Genome Sequencing/methods
17.
Cytokine ; 127: 154974, 2020 03.
Article in English | MEDLINE | ID: mdl-31978642

ABSTRACT

Although ischemic heart disease is the leading cause of death worldwide, mainstay treatments ultimately fail because they do not adequately address disease pathophysiology. Restoring the microvascular perfusion deficit remains a significant unmet need and may be addressed via delivery of pro-angiogenic cytokines. The therapeutic effect of cytokines can be enhanced by encapsulation within hydrogels, but current hydrogels do not offer sufficient clinical translatability due to unfavorable viscoelastic mechanical behavior which directly impacts the ability for minimally-invasive catheter delivery. In this report, we examine the therapeutic implications of dual-stage cytokine release from a novel, highly shear-thinning biocompatible catheter-deliverable hydrogel. We chose to encapsulate two protein-engineered cytokines, namely dimeric fragment of hepatocyte growth factor (HGFdf) and engineered stromal cell-derived factor 1α (ESA), which target distinct disease pathways. The controlled release of HGFdf and ESA from separate phases of the hyaluronic acid-based hydrogel allows extended and pronounced beneficial effects due to the precise timing of release. We evaluated the therapeutic efficacy of this treatment strategy in a small animal model of myocardial ischemia and observed a significant benefit in biological and functional parameters. Given the encouraging results from the small animal experiment, we translated this treatment to a large animal preclinical model and observed a reduction in scar size, indicating this strategy could serve as a potential adjunct therapy for the millions of people suffering from ischemic heart disease.


Subject(s)
Hydrogels/administration & dosage , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardium/metabolism , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Catheters , Cells, Cultured , Disease Models, Animal , Hepatocyte Growth Factor/metabolism , Humans , Hyaluronic Acid/administration & dosage , Myocardial Ischemia/drug therapy , Myocardial Ischemia/metabolism , Myocardium/pathology , Rats
18.
J Pediatr Surg ; 55(1): 194-200, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31704043

ABSTRACT

BACKGROUND: Hirschprung's disease is characterized by aganglionic bowel and often requires surgical resection. Cell-based therapies have been investigated as potential alternatives to restore functioning neurons. Skin-derived precursor cells (SKPs) differentiate into neural and glial cells in vitro and generate ganglion-like structures in rodents. In this report, we aimed to translate this approach into a large animal model of aganglionosis using autologous transplantation of SKPs. METHODS: Juvenile pigs underwent skin procurement from the shoulder and simultaneous chemical denervation of an isolated colonic segment. Skin cells were cultured in neuroglial-selective medium and labeled with fluorescent dye for later identification. The cultured SKPs were then injected into the aganglionic segments of colon, and the specimens were retrieved within seven days after transplantation. SKPs in vitro and in vivo were assessed with histologic samples for various immunofluorescent markers of multipotency and differentiation. SKPs from the time of harvest were compared to those at the time of injection using PCR. RESULTS: Prior to transplantation, 72% of SKPs stained positive for nestin and S100b, markers of neural and glial precursor cells of neural crest origin, respectively. Markers of differentiated neurons and gliocytes, TUJ1 and GFAP, were detected in 47% of cultured SKPs. After transplantation, SKPs were identified in both myenteric and submucosal plexuses of the treated colon. Nestin co-expression was detected in the SKPs within the aganglionic colon in vivo. Injected SKPs appeared to migrate and express early neuroglial differentiation markers. CONCLUSIONS: Autologous SKPs implanted into aganglionic bowel demonstrated immunophenotypes of neuroglial progenitors. Our results suggest that autologous SKPs may be potentially useful for cell-based therapy for patients with enteric nervous system disorders. TYPE OF STUDY: Basic science.


Subject(s)
Cell Differentiation , Hirschsprung Disease/therapy , Skin/cytology , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Cells, Cultured , Colon , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Hirschsprung Disease/chemically induced , Myenteric Plexus/pathology , Nestin/metabolism , Neurons/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Stem Cells/physiology , Submucous Plexus/pathology , Swine , Transplantation, Autologous , Tubulin/metabolism
19.
Am J Hum Genet ; 105(2): 403-412, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31303265

ABSTRACT

POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder.


Subject(s)
Gene Expression Regulation , Mutation , Neurodevelopmental Disorders/etiology , POU Domain Factors/genetics , Transcriptional Activation , Amino Acid Sequence , Child , Female , Genetic Association Studies , Genotype , Humans , Male , Neurodevelopmental Disorders/pathology , POU Domain Factors/chemistry , Protein Conformation , Sequence Homology
20.
Environ Res ; 176: 108555, 2019 09.
Article in English | MEDLINE | ID: mdl-31288196

ABSTRACT

BACKGROUND: Neonicotinoids are used for insect control in agriculture, landscaping, and on household pets. Neonicotinoids have become popular replacements for organophosphate and carbamate insecticides, and use is on the rise. OBJECTIVES: To assess human exposure to neonicotinoid insecticides in a representative sample of the U.S. general population 3 years and older from the 2015-2016 National Health and Nutrition Examination Survey (NHANES). METHODS: We used online solid-phase extraction coupled to isotope dilution high-performance liquid chromatography-tandem mass spectrometry after enzymatic hydrolysis of conjugates to quantify in 3038 samples the urinary concentrations of six neonicotinoid biomarkers: four parent compounds (acetamiprid, clothianidin, imidacloprid, thiacloprid) and two metabolites (N-desmethyl-acetamiprid, 5-hydroxy-imidacloprid). We calculated distribution percentiles, and used regression models to evaluate associations of various demographic parameters and fasting time with urinary concentrations above the 95th percentile (a value selected to represent higher than average concentrations) of neonicotinoid biomarkers. RESULTS: Weighted detection frequencies were 35% (N-desmethyl-acetamiprid), 19.7% (5-hydroxy imidacloprid), 7.7% (clothianidin), 4.3% (imidacloprid), and <0.5% (acetamiprid, thiacloprid). The weighted frequency of having detectable concentrations of at least one of the six biomarkers examined was 49.1%. The 95th percentile concentrations for N-desmethyl-acetamiprid, 5-hydroxy imidacloprid, and clothianidin were 1.29, 1.37, and 0.396 µg/L, respectively. For people who fasted <8 h, regardless of race/ethnicity and sex, 3-5 year old children were more likely to have N-desmethyl-acetamiprid concentrations above the 95th percentile than adolescents (adjusted odds ratio (OR) = 3.12; 95% confidence interval [CI], (0.98-9.98)) and adults (adjusted OR = 4.29; 95% CI, (2.04-9.0)); and children 6-11 years of age were more likely than adults to have N-desmethyl-acetamiprid concentrations above the 95th percentile (adjusted OR = 2.65; 95% CI, (1.2-5.84)). Asians were more likely than non-Asians to have concentrations above the 95th percentile of N-desmethyl-acetamiprid (adjusted OR = 1.94; 95% CI, (1.08-3.49)) and 5-hydroxy-imidacloprid (adjusted OR = 2.25; 95% CI, (1.44-3.51)). Samples collected during the summer were more likely to have metabolite concentrations above the 95th percentile than those collected in the winter (adjusted OR 1.55 for N-desmethyl-acetamiprid, and 2.43 for 5-hydroxy-imidacloprid). CONCLUSIONS: The detection of neonicotinoid metabolites more frequently and at much higher concentrations than the corresponding parent compounds suggests that the metabolites may be suitable biomarkers to assess background exposures. About half of the U.S. general population 3 years of age and older was recently exposed to neonicotinoids. Compared to other age ranges and ethnicities, young children and Asians may experience higher exposures. At present, reasons for such differences remain unknown.


Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Pollutants , Insecticides , Neonicotinoids/analysis , Adolescent , Adult , Child , Child, Preschool , Chromatography, High Pressure Liquid , Female , Humans , Male , Middle Aged , Nitro Compounds , Nutrition Surveys , Solid Phase Extraction
SELECTION OF CITATIONS
SEARCH DETAIL
...