Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Biotechnol ; 24(9): 1123-31, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16964226

ABSTRACT

We have assessed the utility of RNA titration samples for evaluating microarray platform performance and the impact of different normalization methods on the results obtained. As part of the MicroArray Quality Control project, we investigated the performance of five commercial microarray platforms using two independent RNA samples and two titration mixtures of these samples. Focusing on 12,091 genes common across all platforms, we determined the ability of each platform to detect the correct titration response across the samples. Global deviations from the response predicted by the titration ratios were observed. These differences could be explained by variations in relative amounts of messenger RNA as a fraction of total RNA between the two independent samples. Overall, both the qualitative and quantitative correspondence across platforms was high. In summary, titration samples may be regarded as a valuable tool, not only for assessing microarray platform performance and different analysis methods, but also for determining some underlying biological features of the samples.


Subject(s)
Equipment Failure Analysis/methods , Gene Expression Profiling/instrumentation , Gene Expression Profiling/standards , Oligonucleotide Array Sequence Analysis/instrumentation , Oligonucleotide Array Sequence Analysis/standards , RNA/analysis , RNA/genetics , Algorithms , Reference Values , Reproducibility of Results , Sensitivity and Specificity , United States
2.
Nat Biotechnol ; 24(9): 1151-61, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16964229

ABSTRACT

Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues. Expression data on four titration pools from two distinct reference RNA samples were generated at multiple test sites using a variety of microarray-based and alternative technology platforms. Here we describe the experimental design and probe mapping efforts behind the MAQC project. We show intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed. This study provides a resource that represents an important first step toward establishing a framework for the use of microarrays in clinical and regulatory settings.


Subject(s)
Gene Expression Profiling/instrumentation , Oligonucleotide Array Sequence Analysis/instrumentation , Quality Assurance, Health Care/methods , Equipment Design , Equipment Failure Analysis , Gene Expression Profiling/methods , Quality Control , Reproducibility of Results , Sensitivity and Specificity , United States
3.
BMC Dev Biol ; 6: 20, 2006 May 03.
Article in English | MEDLINE | ID: mdl-16672070

ABSTRACT

BACKGROUND: In order to compare the gene expression profiles of human embryonic stem cell (hESC) lines and their differentiated progeny and to monitor feeder contaminations, we have examined gene expression in seven hESC lines and human fibroblast feeder cells using Illumina bead arrays that contain probes for 24,131 transcript probes. RESULTS: A total of 48 different samples (including duplicates) grown in multiple laboratories under different conditions were analyzed and pairwise comparisons were performed in all groups. Hierarchical clustering showed that blinded duplicates were correctly identified as the closest related samples. hESC lines clustered together irrespective of the laboratory in which they were maintained. hESCs could be readily distinguished from embryoid bodies (EB) differentiated from them and the karyotypically abnormal hESC line BG01V. The embryonal carcinoma (EC) line NTera2 is a useful model for evaluating characteristics of hESCs. Expression of subsets of individual genes was validated by comparing with published databases, MPSS (Massively Parallel Signature Sequencing) libraries, and parallel analysis by microarray and RT-PCR. CONCLUSION: we show that Illumina's bead array platform is a reliable, reproducible and robust method for developing base global profiles of cells and identifying similarities and differences in large number of samples.


Subject(s)
Carcinoma, Embryonal/pathology , Cell Line , Genome, Human , Stem Cells , Embryo Research/legislation & jurisprudence , Embryo, Mammalian/cytology , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Government Regulation , Humans , Oligonucleotide Array Sequence Analysis , United States
4.
Stem Cells Dev ; 14(5): 517-34, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16305337

ABSTRACT

NTera2, a human embryonal carcinoma (EC) stem cell line, shares many characteristics with human embryonic stem cells (hESCs). To determine whether NTera2 can serve as a useful surrogate for hESCs, we compared global gene expression between undifferentiated NTera2, multiple undifferentiated hESC cell lines, and their differentiated derivatives, and we showed that NTera2 cells share multiple markers with hESCs. Similar to hESCs, NTera2 cells differentiated into TH-positive cells that express dopaminergic markers including AADC, DAT, Nurr1, TrkB, TrkC, and GFRA1 when co-cultured with PA6 cells. Flow cytometry analysis showed that tyrosine hydroxylase (TH) and neural cell adhesion molecule (NCAM) expression increased, whereas SSEA4 expression decreased as cells differentiated. Medium conditioned by PA6 cells stimulated differentiation of NTera2 cells to generate TH-positive cells that expressed dopaminergic markers. Flow cytometry selected polysialylated (PSA-NCAM) cells responded to medium conditioned by PA6 cells by differentiating into TH-positive cells and expressed dopaminergic markers. Sorted cells differentiated for 4 weeks in PA6 cell conditioned media included functional neurons that responded to neurotransmitters and exhibited electronic excitability. Therefore, NTera2 cell dopaminergic neuronal differentiation and PSA-NCAM enrichment provides a useful system for the future study of hESCs.


Subject(s)
Cell Differentiation/physiology , Cell Line, Tumor , Dopamine/metabolism , Neurons/physiology , Stem Cells/physiology , Animals , Biomarkers/metabolism , Cell Shape , Coculture Techniques , Culture Media, Conditioned , Electrophysiology , Flow Cytometry , Gene Expression Profiling , Humans , Microarray Analysis , Molecular Sequence Data , Neural Cell Adhesion Molecules/chemistry , Neural Cell Adhesion Molecules/metabolism , Neurons/cytology , Stem Cells/cytology , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
5.
Nat Methods ; 2(10): 731-4, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16179916

ABSTRACT

Standard controls and best practice guidelines advance acceptance of data from research, preclinical and clinical laboratories by providing a means for evaluating data quality. The External RNA Controls Consortium (ERCC) is developing commonly agreed-upon and tested controls for use in expression assays, a true industry-wide standard control.


Subject(s)
Gene Expression Profiling/standards , Oligonucleotide Array Sequence Analysis/standards , RNA, Messenger/analysis , Animals , Guidelines as Topic , Humans , Mice , Quality Control , Rats
6.
Genome Res ; 14(11): 2347-56, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15520296

ABSTRACT

We have developed a new microarray technology for quantitative gene-expression profiling on the basis of randomly assembled arrays of beads. Each bead carries a gene-specific probe sequence. There are multiple copies of each sequence-specific bead in an array, which contributes to measurement precision and reliability. We optimized the system for specific and sensitive analysis of mammalian RNA, and using RNA controls of defined concentration, obtained the following estimates of system performance: specificity of 1:250,000 in mammalian poly(A(+)) mRNA; limit of detection 0.13 pM; dynamic range 3.2 logs; and sufficient precision to detect 1.3-fold differences with 95% confidence within the dynamic range. Measurements of expression differences between human brain and liver were validated by concordance with quantitative real-time PCR (R(2) = 0.98 for log-transformed ratios, and slope of the best-fit line = 1.04, for 20 genes). Quantitative performance was further verified using a mouse B- and T-cell model system. We found published reports of B- or T-cell-specific expression for 42 of 59 genes that showed the greatest differential expression between B- and T-cells in our system. All of the literature observations were concordant with our results. Our experiments were carried out on a 96-array matrix system that requires only 100 ng of input RNA and uses standard microtiter plates to process samples in parallel. Our technology has advantages for analyzing multiple samples, is scalable to all known genes in a genome, and is flexible, allowing the use of standard or custom probes in an array.


Subject(s)
DNA, Complementary/analysis , Gene Expression Profiling/methods , Gene Expression , Oligonucleotide Array Sequence Analysis/methods , RNA, Messenger/analysis , Transcription, Genetic , Animals , B-Lymphocytes/chemistry , Brain Chemistry , DNA Primers , Humans , Mice , Nucleic Acid Hybridization/methods , Polymerase Chain Reaction , Reference Standards , Spleen/chemistry , T-Lymphocytes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...