Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biomacromolecules ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775104

ABSTRACT

Cationic polysaccharides have been extensively studied for drug delivery via the bloodstream, yet few have progressed to clinical use. Endothelial cells lining the blood vessel wall are coated in an anionic extracellular matrix called the glycocalyx. However, we do not fully comprehend the charged polysaccharide interactions with the glycocalyx. We reveal that the cationic polysaccharide poly(acetyl, arginyl) glucosamine (PAAG) exhibits the highest association with the endothelial glycocalyx, followed by dextran (neutral) and hyaluronan (anionic). Furthermore, we demonstrate that PAAG binds heparan sulfate (HS) within the glycocalyx, leading to intracellular accumulation. Using an in vitro glycocalyx model, we demonstrate a charge-based extent of association of polysaccharides with HS. Mechanistically, we observe that PAAG binding to HS occurs via a condensation reaction and functionally protects HS from degradation. Together, this study reveals the interplay between polysaccharide charge properties and interactions with the endothelial cell glycocalyx toward improved delivery system design and application.

2.
J Cyst Fibros ; 22(6): 1104-1112, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714777

ABSTRACT

BACKGROUND: Mucus stasis, a hallmark of muco-obstructive disease, results from impaired mucociliary transport and leads to lung function decline and chronic infection. Although therapeutics that target mucus stasis in the airway, such as hypertonic saline or rhDNAse, show some therapeutic benefit, they do not address the underlying electrostatic defect apparent in mucins in CF and related conditions. We have previously shown poly (acetyl, arginyl) glucosamine (PAAG, developed as SNSP113), a soluble, cationic polymer, significantly improves mucociliary transport in a rat model of CF by normalizing the charge defects of CF mucin. Here, we report efficacy in the CFTR-sufficient, ENaC hyperactive, Scnn1b-Tg mouse model that develops airway muco-obstruction due to sodium hyperabsorption and airway dehydration. METHODS: Scnn1b-Tg mice were treated with either 250 µg/mL SNSP113 or vehicle control (1.38% glycerol in PBS) via nebulization once daily for 7 days and then euthanized for analysis. Micro-Optical Coherence Tomography-based evaluation of excised mouse trachea was used to determine the effect on the functional microanatomy. Tissue analysis was performed by routine histopathology. RESULTS: Nebulized treatment of SNSP113 significantly improved mucociliary transport in the airways of Scnn1b-Tg mice, without altering the airway surface or periciliary liquid layer. In addition, SNSP113 significantly reversed epithelial hypertrophy and goblet cell metaplasia. Finally, SNSP113 significantly ameliorated eosinophilic crystalline pneumonia and lung consolidation in addition to inflammatory macrophage influx in this model. CONCLUSION: Overall, this study extends the efficacy of SNSP113 as a potential therapeutic to alleviate mucus stasis in muco-obstructive diseases in CF and potentially in related conditions.


Subject(s)
Airway Obstruction , Cystic Fibrosis , Pregnancy-Associated alpha 2-Macroglobulins , Female , Pregnancy , Mice , Animals , Rats , Mucociliary Clearance , Mice, Transgenic , Disease Models, Animal , Mice, Inbred CFTR , Lung , Epithelial Sodium Channels/genetics
3.
Adv Drug Deliv Rev ; 184: 114195, 2022 05.
Article in English | MEDLINE | ID: mdl-35292326

ABSTRACT

Cell membranes are key interfaces where materials engineering meets biology. Traditionally regarded as just the location of receptors regulating the uptake of molecules, we now know that all mammalian cell membranes are 'sugar coated'. These sugars, or glycans, form a matrix bound at the cell membrane via proteins and lipids, referred to as the glycocalyx, which modulate access to cell membrane receptors crucial for interactions with drug delivery systems (DDS). Focusing on the key blood-tissue barrier faced by most DDS to enable transport from the place of administration to target sites via the circulation, we critically assess the design of carriers for interactions at the endothelial cell surface. We also discuss the current challenges for this area and provide opportunities for future research efforts to more fully engineer DDS for controlled, efficient, and targeted interactions with the endothelium for therapeutic application.


Subject(s)
Endothelium, Vascular , Glycocalyx , Animals , Biological Transport , Drug Delivery Systems , Endothelial Cells , Glycocalyx/metabolism , Humans , Mammals
4.
Microbiology (Reading) ; 168(1)2022 01.
Article in English | MEDLINE | ID: mdl-35077346

ABSTRACT

Pseudomonas aeruginosa is a common opportunistic pathogen that can cause chronic infections in multiple disease states, including respiratory infections in patients with cystic fibrosis (CF) and non-CF bronchiectasis. Like many opportunists, P. aeruginosa forms multicellular biofilm communities that are widely thought to be an important determinant of bacterial persistence and resistance to antimicrobials and host immune effectors during chronic/recurrent infections. Poly (acetyl, arginyl) glucosamine (PAAG) is a glycopolymer that has antimicrobial activity against a broad range of bacterial species, and also has mucolytic activity, which can normalize the rheological properties of cystic fibrosis mucus. In this study, we sought to evaluate the effect of PAAG on P. aeruginosa bacteria within biofilms in vitro, and in the context of experimental pulmonary infection in a rodent infection model. PAAG treatment caused significant bactericidal activity against P. aeruginosa biofilms, and a reduction in the total biomass of preformed P. aeruginosa biofilms on abiotic surfaces, as well as on the surface of immortalized cystic fibrosis human bronchial epithelial cells. Studies of membrane integrity indicated that PAAG causes changes to P. aeruginosa cell morphology and dysregulates membrane polarity. PAAG treatment reduced infection and consequent tissue inflammation in experimental P. aeruginosa rat infections. Based on these findings we conclude that PAAG represents a novel means to combat P. aeruginosa infection, and may warrant further evaluation as a therapeutic.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Animals , Anti-Bacterial Agents/pharmacology , Biofilms , Cystic Fibrosis/microbiology , Glucosamine/pharmacology , Glucosamine/therapeutic use , Humans , Lung/microbiology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/physiology , Rats
5.
JCI Insight ; 4(8)2019 04 18.
Article in English | MEDLINE | ID: mdl-30996141

ABSTRACT

Cystic fibrosis (CF) is characterized by increased mucus viscosity and delayed mucociliary clearance that contributes to progressive decline of lung function. Mucus in the respiratory and GI tract is excessively adhesive in the presence of airway dehydration and excess extracellular Ca2+ upon mucin release, promoting hyperviscous, densely packed mucins characteristic of CF. Therapies that target mucins directly through ionic interactions remain unexploited. Here we show that poly (acetyl, arginyl) glucosamine (PAAG), a polycationic biopolymer suitable for human use, interacts directly with mucins in a Ca2+-sensitive manner to reduce CF mucus viscoelasticity and improve its transport. Notably, PAAG induced a linear structure of purified MUC5B and altered its sedimentation profile and viscosity, indicative of proper mucin expansion. In vivo, PAAG nebulization improved mucociliary transport in CF rats with delayed mucus clearance, and cleared mucus plugging in CF ferrets. This study demonstrates the potential use of a synthetic glycopolymer PAAG as a molecular agent that could benefit patients with a broad array of mucus diseases.


Subject(s)
Cystic Fibrosis/drug therapy , Glucosamine/analogs & derivatives , Mucin-5B/metabolism , Mucociliary Clearance/drug effects , Mucus/drug effects , Polymers/pharmacology , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Disease Models, Animal , Ferrets , Glucosamine/pharmacology , Glucosamine/therapeutic use , Humans , Mice , Mice, Inbred CFTR , Mucin-5B/chemistry , Mucus/metabolism , Polymers/therapeutic use , Protein Structure, Quaternary/drug effects , Rats , Respiratory Mucosa/drug effects , Respiratory Mucosa/pathology , Viscosity/drug effects
6.
Article in English | MEDLINE | ID: mdl-30910901

ABSTRACT

Burkholderia cepacia complex (Bcc) lung infections in cystic fibrosis (CF) patients are often associated with a steady decline in lung function and death. The formation of biofilms and inherent multidrug resistance are virulence factors associated with Bcc infection and contribute to increased risk of mortality in CF patients. New therapeutic strategies targeting bacterial biofilms are anticipated to enhance antibiotic penetration and facilitate resolution of infection. Poly (acetyl, arginyl) glucosamine (PAAG) is a cationic glycopolymer therapeutic being developed to directly target biofilm integrity. In this study, 13 isolates from 7 species were examined, including Burkholderia multivorans, Burkholderia cenocepacia, Burkholderia gladioli, Burkholderia dolosa, Burkholderia vietnamiensis, and B. cepacia These isolates were selected for their resistance to standard clinical antibiotics and their ability to form biofilms in vitro Biofilm biomass was quantitated using static tissue culture plate (TCP) biofilm methods and a minimum biofilm eradication concentration (MBEC) assay. Confocal laser scanning microscopy (CLSM) visualized biofilm removal by PAAG during treatment. Both TCP and MBEC methods demonstrated a significant dose-dependent relationship with regard to biofilm removal by 50 to 200 µg/ml PAAG following a 1-h treatment (P < 0.01). A significant reduction in biofilm thickness was observed following a 10-min treatment of Bcc biofilms with PAAG compared to that with vehicle control (P < 0.001) in TCP, MBEC, and CLSM analyses. PAAG also rapidly permeabilizes bacteria within the first 10 min of treatment. Glycopolymers, such as PAAG, are a new class of large-molecule therapeutics that support the treatment of recalcitrant Bcc biofilm.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Burkholderia Infections/drug therapy , Burkholderia cepacia complex/drug effects , Cystic Fibrosis/drug therapy , Glucosamine/pharmacology , Burkholderia Infections/microbiology , Cystic Fibrosis/microbiology , Humans , Microbial Sensitivity Tests/methods , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology
7.
PLoS One ; 13(1): e0191522, 2018.
Article in English | MEDLINE | ID: mdl-29342216

ABSTRACT

The incidence of multidrug-resistant (MDR) organisms, including methicillin-resistant Staphylococcus aureus (MRSA), is a serious threat to public health. Progress in developing new therapeutics is being outpaced by antibiotic resistance development, and alternative agents that rapidly permeabilize bacteria hold tremendous potential for treating MDR infections. A new class of glycopolymers includes polycationic poly-N (acetyl, arginyl) glucosamine (PAAG) is under development as an alternative to traditional antibiotic strategies to treat MRSA infections. This study demonstrates the antibacterial activity of PAAG against clinical isolates of methicillin and mupirocin-resistant Staphylococcus aureus. Multidrug-resistant S. aureus was rapidly killed by PAAG, which completely eradicated 88% (15/17) of all tested strains (6-log reduction in CFU) in ≤ 12-hours at doses that are non-toxic to mammalian cells. PAAG also sensitized all the clinical MRSA strains (17/17) to oxacillin as demonstrated by the observed reduction in the oxacillin MIC to below the antibiotic resistance breakpoint. The effect of PAAG and standard antibiotics including vancomycin, oxacillin, mupirocin and bacitracin on MRSA permeability was studied by measuring propidium iodide (PI) uptake by bacterial cells. Antimicrobial resistance studies showed that S. aureus developed resistance to PAAG at a rate slower than to mupirocin but similar to bacitracin. PAAG was observed to resensitize drug-resistant S. aureus strains sampled from passage 13 and 20 of the multi-passage resistance study, reducing MICs of mupirocin and bacitracin below their clinical sensitivity breakpoints. This class of bacterial permeabilizing glycopolymers may provide a new tool in the battle against multidrug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Glucosamine/analogs & derivatives , Methicillin-Resistant Staphylococcus aureus/drug effects , Polymers/pharmacology , Polysaccharides/pharmacology , Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial , Glucosamine/chemistry , Glucosamine/pharmacology , Glycosides , Humans , In Vitro Techniques , Methicillin Resistance , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Mupirocin/pharmacology , Permeability/drug effects , Polymers/chemistry , Polysaccharides/chemistry , Propidium/pharmacokinetics , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
8.
PLoS One ; 12(6): e0179776, 2017.
Article in English | MEDLINE | ID: mdl-28662114

ABSTRACT

Burkholderia cepacia complex (Bcc) infection, associated with cystic fibrosis (CF) is intrinsically multidrug resistant to antibiotic treatment making eradication from the CF lung virtually impossible. Infection with Bcc leads to a rapid decline in lung function and is often a contraindication for lung transplant, significantly influencing morbidity and mortality associated with CF disease. Standard treatment frequently involves antibiotic combination therapy. However, no formal strategy has been adopted in clinical practice to guide successful eradication. A new class of direct-acting, large molecule polycationic glycopolymers, derivatives of a natural polysaccharide poly-N-acetyl-glucosamine (PAAG), are in development as an alternative to traditional antibiotic strategies. During treatment, PAAG rapidly targets the anionic structural composition of bacterial outer membranes. PAAG was observed to permeabilize bacterial membranes upon contact to facilitate potentiation of antibiotic activity. Three-dimensional checkerboard synergy analyses were used to test the susceptibility of eight Bcc strains (seven CF clinical isolates) to antibiotic combinations with PAAG or ceftazidime. Potentiation of tobramycin and meropenem activity was observed in combination with 8-128 µg/mL PAAG. Treatment with PAAG reduced the minimum inhibitory concentration (MIC) of tobramycin and meropenem below their clinical sensitivity breakpoints (≤4 µg/mL), demonstrating the ability of PAAG to sensitize antibiotic resistant Bcc clinical isolates. Fractional inhibitory concentration (FIC) calculations showed PAAG was able to significantly potentiate antibacterial synergy with these antibiotics toward all Bcc species tested. These preliminary studies suggest PAAG facilitates a broad synergistic activity that may result in more positive therapeutic outcomes and supports further development of safe, polycationic glycopolymers for inhaled combination antibiotic therapy, particularly for CF-associated Bcc infections.


Subject(s)
Acetylglucosamine/pharmacology , Anti-Bacterial Agents/pharmacology , Burkholderia cepacia complex/isolation & purification , Cystic Fibrosis/microbiology , Thienamycins/pharmacology , Tobramycin/pharmacology , Burkholderia cepacia complex/drug effects , Drug Resistance, Bacterial , Humans , Meropenem , Microbial Sensitivity Tests
9.
J Biomed Mater Res A ; 101(2): 340-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22847951

ABSTRACT

Burns are a significant health challenge and healing can result in scar formation. Chitosan, a derivative of chitin, has been used to promote wound healing. In this study we used gene expression profiling in a mouse model of full thickness cutaneous burn to assess the benefits of treating with a chitosan lactate dressing. Three days after wounding mice treated with chitosan showed increased expression of genes associated with formation of granulation tissue. At a later time point, seven days after wounding, genes that initially showed increased expression were now down-regulated, and there was increased expression of genes involved in remodeling suggesting that the chitosan treatment results in accelerated healing. Quantitative RT-PCR showed modulated mRNA levels for TGFß1 by the chitosan dressing. TGFß1 initially promotes healing but extended activity can result in scarring. Importantly we found that expression was elevated at day three, but decreased at day seven suggesting that chitosan treatment will not result in scar formation, and may even be beneficial in preventing scar formation. Additionally, the biphasic regulation of expression of TGFß1 could be a powerful biomarker for future studies of the wound-healing potential of chitosan based and other treatments for burn wounds.


Subject(s)
Bandages , Burns/genetics , Chitosan/pharmacology , Gene Expression Profiling , Regeneration/drug effects , Signal Transduction/genetics , Wound Healing/drug effects , Animals , Burns/pathology , Down-Regulation/drug effects , Down-Regulation/genetics , Female , Fibrosis , Gene Regulatory Networks/drug effects , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regeneration/genetics , Reproducibility of Results , Up-Regulation/drug effects , Up-Regulation/genetics , Wound Healing/genetics
10.
ACS Appl Mater Interfaces ; 2(8): 2360-4, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20735108

ABSTRACT

We demonstrate the operation of a device that can produce chitosan nanoparticles in a tunable size range from 50-300 nm with small size dispersion. A piezoelectric oscillator operated at megahertz frequencies is used to aerosolize a solution containing dissolved chitosan. The solvent is then evaporated from the aerosolized droplets in a heat pipe, leaving monodisperse nanoparticles to be collected. The nanoparticle size is controlled both by the concentration of the dissolved polymer and by the size of the aerosol droplets that are created. Our device can be used with any polymer or polymer/therapeutic combination that can be prepared in a homogeneous solution and vaporized.


Subject(s)
Biocompatible Materials/chemistry , Chitosan/chemistry , Nanotechnology/methods , Solutions/chemistry , Ultrasonics , Acetic Acid/chemistry , Drug Delivery Systems/methods , Electrochemistry , Genetic Therapy/methods , Hydrogen-Ion Concentration , Models, Chemical , Nanoparticles , Nebulizers and Vaporizers
11.
Acta Biomater ; 6(7): 2562-71, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20060936

ABSTRACT

The antimicrobial activity of chitosan and chitosan derivatives has been well established. However, although several mechanisms have been proposed, the exact mode of action is still unclear. Here we report on the investigation of antibacterial activity and the antibacterial mode of action of a novel water-soluble chitosan derivative, arginine-functionalized chitosan, on the Gram-negative bacteria Pseudomonas fluorescens and Escherichia coli. Two different arginine-functionalized chitosans (6% arginine-substituted and 30% arginine-substituted) each strongly inhibited P. fluorescens and E. coli growth. Time-dependent killing efficacy experiments showed that 5000 mg l(-1) of 6%- and 30%-substituted chitosan-arginine killed 2.7 logs and 4.5 logs of P. fluorescens, and 4.8 logs and 4.6 logs of E. coli in 4h, respectively. At low concentrations, the 6%-substituted chitosan-arginine was more effective in inhibiting cell growth even though the 30%-substituted chitosan-arginine appeared to be more effective in permeabilizing the cell membranes of both P. fluorescens and E. coli. Studies using fluorescent probes, 1-N-phenyl-naphthylamine (NPN), nile red (NR) and propidium iodide (PI), and field emission scanning electron microscopy (FESEM) suggest that chitosan-arginine's antibacterial activity is, at least in part, due to its interaction with the cell membrane, in which it increases membrane permeability.


Subject(s)
Anti-Bacterial Agents/pharmacology , Arginine/pharmacology , Chitosan/pharmacology , Escherichia coli/drug effects , Pseudomonas fluorescens/drug effects , Escherichia coli/growth & development , Fluorescent Dyes , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Pseudomonas fluorescens/growth & development
12.
Langmuir ; 22(26): 11092-6, 2006 Dec 19.
Article in English | MEDLINE | ID: mdl-17154589

ABSTRACT

The fabrication of nanoporous templates from poly(styrene)-b-poly(methyl methacrylate) diblock copolymer thin films (PS-b-PMMA, volume ratio 70:30) on silicon requires precise control of interfacial energies to achieve a perpendicular orientation of the PMMA cylindrical microdomains relative to the substrate. To provide a simple, rapid, yet tunable approach for surface neutralization, we investigated the self-assembled ordering of PS-b-PMMA diblock copolymer thin films on silicon substrates modified with a partial monolayer of octadecyldimethyl chlorosilane (ODMS), i.e., a layer of ODMS with a grafting density less than the maximum possible monolayer surface coverage. We demonstrate herein the fabrication of nanoporous PS templates from annealed PS-b-PMMA diblock copolymer thin films on these partial ODMS SAMs.

13.
Langmuir ; 22(11): 4978-84, 2006 May 23.
Article in English | MEDLINE | ID: mdl-16700583

ABSTRACT

We report the deposition of DNA-conjugated gold nanospheres into arrays of surface nanopores obtained from hexagonally ordered thin polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer films on silicon. The deposition occurs spontaneously from aqueous solution and is driven by either electrostatic interactions or specific DNA hybridization events between the DNA nanospheres and the surface nanopores. To mitigate this spontaneous deposition, we have chemically modified the nanopores with either positively charged aminosilanes or oligonucleotide probe sequences. The deposition of DNA nanospheres into the surface nanopores was characterized by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). We have observed preferential immobilization of individual DNA nanospheres within the nanopores, based on the size matching between the two entities. The inclusion density and selectivity of DNA nanosphere deposition into the surface nanopores was found to depend predominantly on the methods through which the nanoporous surfaces were prepared and chemically functionalized.


Subject(s)
DNA/chemistry , Gold/chemistry , Nanotubes/chemistry , Microscopy, Atomic Force , Nanotubes/ultrastructure , Porosity , Spectrum Analysis , Surface Properties
14.
Anal Chem ; 77(24): 7984-92, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16351146

ABSTRACT

We present a simple, rapid method for detecting short DNA sequences that combines a novel isothermal amplification method (EXPAR) with visual, colorimetric readout based on aggregation of DNA-functionalized gold nanospheres. The reaction is initiated by a trigger oligonucleotide, synthetic in nature for this proof-of-principle study, which is exponentially amplified at 55 degrees C and converted to a universal reporter oligonucleotide capable of bridging two sets of DNA-functionalized gold nanospheres. This reaction provides >10(6)-fold amplification/conversion in under 5 min. When combined with a solution containing DNA nanospheres, the bridging reporter causes nanosphere aggregation. The resulting color change from red to dark purple or blue is enhanced through spotting the solution onto a C18 reversed-phase thin-layer chromatography plate. The reaction can easily be adapted for detection of different trigger oligonucleotides using the same set of DNA nanospheres. It permits detection of as low as 100 fM trigger oligonucleotide in under 10 min total assay time, with minimal reagent consumption and requirement for instrumentation. We expect that combining this simple, versatile assay with trigger generation from a genomic target DNA sequence of interest will be a powerful tool in the development of rapid and simple point-of-care molecular diagnostic applications.


Subject(s)
DNA/analysis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Base Sequence , Chromatography, Thin Layer/methods , Colorimetry/methods , Nanotubes , Nucleic Acid Hybridization/methods , Oligodeoxyribonucleotides/chemistry , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...