Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 27(5): 952-963, 2024 May.
Article in English | MEDLINE | ID: mdl-38499854

ABSTRACT

Innate behaviors meet multiple needs adaptively and in a serial order, suggesting the existence of a hitherto elusive brain dynamics that brings together representations of upcoming behaviors during their selection. Here we show that during behavioral transitions, possible upcoming behaviors are encoded by specific signatures of neuronal populations in the lateral hypothalamus (LH) that are active near beta oscillation peaks. Optogenetic recruitment of intrahypothalamic inhibition at this phase eliminates behavioral transitions. We show that transitions are elicited by beta-rhythmic inputs from the prefrontal cortex that spontaneously synchronize with LH 'transition cells' encoding multiple behaviors. Downstream of the LH, dopamine neurons increase firing during beta oscillations and also encode behavioral transitions. Thus, a hypothalamic transition state signals alternative future behaviors, encodes the one most likely to be selected and enables rapid coordination with cognitive and reward-processing circuitries, commanding adaptive social contact and eating behaviors.


Subject(s)
Beta Rhythm , Neural Pathways , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Neural Pathways/physiology , Male , Beta Rhythm/physiology , Mice , Optogenetics , Behavior, Animal/physiology , Hypothalamic Area, Lateral/physiology , Reward , Dopaminergic Neurons/physiology , Hypothalamus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...