Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 191(5): 2319-27, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23913965

ABSTRACT

Regulatory T cells (Tregs) play a pivotal role in the maintenance of immune tolerance and hold great promise as cell therapy for a variety of immune-mediated diseases. However, the cellular mechanisms that regulate Treg maintenance and homeostasis have yet to be fully explored. Although Tregs express granzyme-B (GrB) to suppress effector T cells via direct killing, the mechanisms by which they protect themselves from GrB-mediated self-inflicted damage are unknown. To our knowledge, we show for the first time that both induced Tregs and natural Tregs (nTregs) increase their intracellular expression of GrB and its endogenous inhibitor, serine protease inhibitor 6 (Spi6) upon activation. Subcellular fractionation and measurement of GrB activity in the cytoplasm of Tregs show that activated Spi6(-/-) Tregs had significantly higher cytoplasmic GrB activity. We observed an increase in GrB-mediated apoptosis in Spi6(-/-) nTregs and impaired suppression of alloreactive T cells in vitro. Spi6(-/-) Tregs were rescued from apoptosis by the addition of a GrB inhibitor (Z-AAD-CMK) in vitro. Furthermore, adoptive transfer experiments showed that Spi6(-/-) nTregs were less effective than wild type nTregs in suppressing graft-versus-host disease because of their impaired survival, as shown in our in vivo bioluminescence imaging. Finally, Spi6-deficient recipients rejected MHC class II-mismatch heart allografts at a much faster rate and showed a higher rate of apoptosis among Tregs, as compared with wild type recipients. To our knowledge, our data demonstrate, for the first time, a novel role for Spi6 in Treg homeostasis by protecting activated Tregs from GrB-mediated injury. These data could have significant clinical implications for Treg-based therapy in immune-mediated diseases.


Subject(s)
Granzymes/immunology , Homeostasis/immunology , Membrane Proteins/immunology , Serine Endopeptidases/immunology , Serpins/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Apoptosis/immunology , Flow Cytometry , Graft vs Host Disease/immunology , Granzymes/metabolism , Heart Transplantation/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Serine Endopeptidases/metabolism , Serpins/metabolism , T-Lymphocytes, Regulatory/metabolism
2.
J Biomed Opt ; 14(3): 030509, 2009.
Article in English | MEDLINE | ID: mdl-19566290

ABSTRACT

We interrogate the ability of free-space fluorescence tomography to image small animals in vivo using charge-coupled device (CCD) camera measurements over 360-deg noncontact projections. We demonstrate the performance of normalized dual-wavelength measurements that are essential for in-vivo use, as they account for the heterogeneous distribution of photons in tissue. In-vivo imaging is then showcased on mouse lung and brain tumors cross-validated by x-ray microcomputed tomography and histology.


Subject(s)
Brain Neoplasms/pathology , Fluorescence , Image Processing, Computer-Assisted/methods , Lung Neoplasms/pathology , Tomography/methods , Animals , Brain Neoplasms/diagnosis , Lung Neoplasms/diagnosis , Mice , Reproducibility of Results , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...