Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Reprod Biomed ; 21(7): 541-550, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37727395

ABSTRACT

Background: Polycystic ovary syndrome (PCOS) is a heterogeneous medical condition with a cluster of metabolic and endocrine disorders including dyslipidemia, insulin resistance, and hyperandrogenism. Objective: The present study aimed to determine the effects of single-dose and co-supplementation of vitamin D (vit D) and omega-3 (O3) on anthropometric and several biochemical factors in women with PCOS. Materials and Methods: In this double-blind, randomized clinical trial, 80 PCOS women referred to Shahid Motahhari Clinic, Shiraz, Iran, from April to October 2017 were studied in 4 groups (n = 20/each) for 8 wk. The placebo group received the placebo capsule (paraffin oil); 1 weekly and 2/daily; the vit D group received vit D (50,000 IU/weekly) + 2 placebo capsules daily, O3 group, 2, O3 capsules daily + 1 placebo capsule weekly, and vit D + O3 (50000 IU/weekly vit D + 2, O3 capsules daily). Before and after 8 wk of intervention, height, weight, body mass index, waist circumference, triglycerides, total cholesterol (TC), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, fasting blood sugar, homeostasis model of insulin resistance index, and sex hormone binding globulin were compared between groups. Results: The significant reduction was detected in serum triglyceride (p = 0.002), TC (p = 0.04), fasting blood sugar (p = 0.02), insulin (p = 0.001), and homeostasis model of insulin resistance index (p = 0.001) concentrations in all vit D, O3, and vit D + O3 supplemented groups compared to the placebo group. Furthermore, in comparison with the placebo group, a significant increase was observed in serum sex hormone binding globulin levels after vit D, O3, and vit D + O3 treatments. Nevertheless, no significant changes were observed in serum high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and anthropometric indices in all treated participants. Conclusion: The current study indicated that single dose and co-supplementation of vit D and O3 for 8 wk was associated with beneficial effects on serum triglyceride, TC, insulin, and sex hormone binding globulin concentrations among women suffering from PCOS.

2.
IET Nanobiotechnol ; 17(4): 289-301, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37096564

ABSTRACT

The outbreak of COVID-19 disease, the cause of severe acute respiratory syndrome, is considered a worldwide public health concern. Although studies indicated that the virus could spread through respiratory particles or droplets in close contact, current research have revealed that the virus stays viable in aerosols for several hours. Numerous investigations have highlighted the protective role of air purifiers in the management of COVID-19 transmission, however, there are still some doubts regarding the efficiency and safety of these technologies. According to those observations, using a proper ventilation system can extensively decrease the spread of COVID-19. However, most of those strategies are currently in the experimental stages. This review aimed at summarising the safety and effectiveness of the recent approaches in this field including using nanofibres that prevent the spread of airborne viruses like SARS-CoV-2. Here, the efficacy of controlling COVID-19 by means of combining multiple strategies is comprehensively discussed.


Subject(s)
Air Filters , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Respiratory Aerosols and Droplets , Nanotechnology
3.
Metabolites ; 12(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36422294

ABSTRACT

Clinical endocrinology entails an understanding of the mechanisms involved in the regulation of tumors that occur in the endocrine system. The exact cause of endocrine cancers remains an enigma, especially when discriminating malignant lesions from benign ones and early diagnosis. In the past few years, the concepts of personalized medicine and metabolomics have gained great popularity in cancer research. In this systematic review, we discussed the clinical metabolomics studies in the diagnosis of endocrine cancers within the last 12 years. Cancer metabolomic studies were largely conducted using nuclear magnetic resonance (NMR) and mass spectrometry (MS) combined with separation techniques such as gas chromatography (GC) and liquid chromatography (LC). Our findings revealed that the majority of the metabolomics studies were conducted on tissue, serum/plasma, and urine samples. Studies most frequently emphasized thyroid cancer, adrenal cancer, and pituitary cancer. Altogether, analytical hyphenated techniques and chemometrics are promising tools in unveiling biomarkers in endocrine cancer and its metabolism disorders.

4.
Sci Rep ; 12(1): 15872, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151457

ABSTRACT

Diabetic retinopathy is a severe microvascular problem in diabetes mellitus. Silymarin is a flavonoid compound, and according to previous studies, it is a bioactive compound with potent antioxidant and anti-inflammatory properties. This investigation aims to peruse the impact of silymarin against diabetic retinopathy in streptozotocin (STZ)-provoked rats. Thirty-two adult male Wistar rats were randomly allocated into the control group, STZ group, STZ + silymarin (50 mg/kg), and STZ + silymarin (100 mg/kg). STZ rats received silymarin every day until 2 months after diabetes induction. The serum and retinal tissues were collected 2 months after silymarin treatment to determine biochemical and molecular analyses. Silymarin markedly lowered the serum glucose concentration in diabetic rats. Silymarin reduced the increased levels of advanced glycosylated end products (AGEs), the receptors for AGEs (RAGE), and reactive oxygen species (ROS) in diabetic rats. Silymarin also attenuated the phosphorylation of p38 MAP kinase and nuclear factor (NF)-κB p65 and diminished diabetes-induced overexpression of inflammatory cytokines, vascular endothelial growth factor (VEGF), adhesion molecules, and extracellular matrix proteins in STZ rats. Our data suggested that silymarin has protective effects against diabetic retinopathy, which might be related to the inhibition of the AGEs/RAGE axis and its antioxidant and anti-inflammatory activities.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Silymarin , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Cytokines/therapeutic use , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Extracellular Matrix Proteins , Glucose/adverse effects , Male , NF-kappa B/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/adverse effects , Silymarin/pharmacology , Silymarin/therapeutic use , Streptozocin/adverse effects , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factors , p38 Mitogen-Activated Protein Kinases
5.
Front Bioeng Biotechnol ; 10: 949704, 2022.
Article in English | MEDLINE | ID: mdl-35992340

ABSTRACT

Bladder cancer is one of the concerning urological malignant diseases in the world, which has a clinical need for effective targeted therapy. The development of nanotechnology-based gene delivery to bladder tumor sites is an effective strategy for targeted cancer therapy with low/no toxicity. With this view, in the present work, the mesoporous silica nanoparticles (MSNs) modified with c(RGDfK)-PLGA-PEG [c(RGDfK)-MSN NPs] were constructed for co-delivery of miR-34a and siPD-L1 within bladder cancer cells and tissues. Our findings showed that miR-34a is downregulated while PD-L1 is up-regulated in cell lines and animal studies. This nano-carrier is biocompatible in the serum environment and effectively protects miR-34a and siPD-L1 against serum degradation. However, we showed that c(RGDfK)-MSN NPs could simultaneously downregulate PD-L1 expression and up-regulate miR-34a in the T24 cells and T24 mice model and enhance anti-tumor effects both in vivo and in vitro. In conclusion, these findings presented new suggestions for improving targeted therapeutic strategies with specified molecular objectives for bladder cancer treatment.

6.
Cell Biol Int ; 46(9): 1320-1344, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35830711

ABSTRACT

Immune-mediated diseases (IMDs) are chronic conditions that have an immune-mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti-inflammatory medications can be reduced. Still, there are many problems with using short-interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA-based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid-based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid-lipid particles, polymeric-based siRNA nanocarriers, polyethylenimine (PEI)-based nanosystems, chitosan-based nanoformulations, inorganic material-based siRNA nanocarriers, and hybrid-based delivery systems. We have also introduced novel siRNA-based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.


Subject(s)
Nanomedicine , Nanoparticles , Humans , Inflammation/genetics , Inflammation/therapy , Lipids , Nanoparticles/therapeutic use , RNA Interference , RNA, Small Interfering/genetics
7.
Rep Biochem Mol Biol ; 11(1): 157-165, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35765523

ABSTRACT

Background: Prostate cancer is known as one of the most prevalent health disorders in the male population globally. The aim of the current study was to evaluate the effects of separate and concomitant use of MK-2206 and salinomycin on prostate cancer cell line. Methods: The antitumor potential of separate and concomitant use of MK-2206 and salinomycin was evaluated in a panel of prostate cancer cell line (PC-3). To get insights into the underlying mechanism of action, different assays including the rate of apoptosis, cell viability, and gene expression were performed in treated prostate cancer cells. Results: A significant reduction was detected in the viability percentage of prostate cancer cells (p< 0.001) and the rate of Akt expression (p< 0.001) in all salinomycin, MK-2206, and salinomycin+MK-2206 groups compared to the negative control group. Furthermore, in comparison with the negative control group, there was a notable increase in both the rate of Bad expression (p< 0.001) and prostate cancer cells apoptosis after salinomycin, MK-2206, and salinomycin+MK-2206 treatments. Moreover, the concomitant use of salinomycin+MK-2206 revealed synergistic improvements regarding the viability of prostate cancer cells and the rate of the Akt and Bad expressions compared to the separate administration of salinomycin and MK-2206 (all p< 0.05). Conclusion: The findings of the present study may contribute to improving the efficacy of the therapies regarding the management of prostate cancer and providing a beneficial strategy in clinical trials.

8.
Gene ; 787: 145638, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33848578

ABSTRACT

BACKGROUND: Green tea is a natural compound with anti-neoplastic properties. Paclitaxel (PTX) is a natural anti-tumor medication used to manage patients with advanced ovarian cancer. This manuscript evaluated the cytotoxic effects of green tea extract combined with PTX drug in two human ovarian cancer cell lines (p53-negative cell line, SKOV-3; and mutant type p53 cell line, OVCAR-3) and underlying mechanisms. METHODS: The human ovarian cancer cell lines were treated with green tea extract, PTX, and green tea plus PTX for 24 h, and cell viability was assessed using the MTT method. Flow cytometric analyses were carried out to detect apoptosis. For the apoptotic process, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis were applied to study pAkt, Bax, Bcl-2, Cytochrome C (Cyt-C), cleaved-caspase-3, and cleaved-caspase-9 levels after drug treatments. RESULTS: Our results pointed out that various green tea (25 and 50 µg/ml) concentrations combined with PTX (20 and 40 µg/ml) synergistically inhibited cell viability of cancer cells more than green tea or PTX alone after 24 h of treatment. Also, green tea and PTX combination induced apoptosis in ovarian cancer cells by blocking the phosphorylation of Akt and the expression of Bcl-2 while inducing Bax, Cyt-C, cleaved-caspase 3, and cleaved-caspase 9. CONCLUSION: Our results showed that the combination of green tea and PTX could be more potent than the individual drug to induce cytotoxicity and apoptosis in ovarian cancer cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Mitochondria/drug effects , Ovarian Neoplasms/drug therapy , Paclitaxel/pharmacology , Plant Extracts/pharmacology , Tea/chemistry , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cytochromes c/metabolism , Drug Screening Assays, Antitumor , Drug Synergism , Female , Humans , Plant Extracts/chemistry , Polyphenols/analysis , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...