Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 12(3): 338-343, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36802496

ABSTRACT

The preparation and reprocessing of an epoxy vitrimer material is performed in a fully biocatalyzed process wherein network formation and exchange reactions are promoted by a lipase enzyme. Binary phase diagrams are introduced to select suitable diacid/diepoxide monomer compositions overcoming the limitations (phase separation/sedimentation) imposed by curing temperature inferior than 100 °C, to protect the enzyme. The ability of lipase TL, embedded in the chemical network, to catalyze efficiently exchange reactions (transesterification) is demonstrated by combining multiple stress relaxation experiments at 70-100 °C and complete recovery of mechanical strength after several reprocessing assays (up to 3 times). Complete stress relaxation ability disappears after heating at 150 °C, due to enzyme denaturation. Transesterification vitrimers thus designed are complementary to those involving classical catalysis (e.g., using the organocatalyst triazabicyclodecene) for which complete stress relaxation is possible only at high temperature.

2.
Nanoscale ; 14(12): 4635-4643, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35262129

ABSTRACT

The development of highly active and selective heterogeneous-based catalysts with tailorable properties is not only a fundamental challenge, but is also crucial in the context of energy savings and sustainable chemistry. Here, we show that ruthenium nanoparticles (RuNPs) stabilised with simple polymerised ionic liquids (PILs) based on N-vinyl imidazolium led to highly active and robust nano-catalysts in hydrogenation reactions, both in water and organic media. Of particular interest, their activity and selectivity could simply be manipulated through counter-anion exchange reactions. Hence, as a proof of concept, the activity of RuNPs could be reversibly turned on and off in the hydrogenation of toluene, while in the case of styrene, the hydrogenation could be selectively switched from ethylbenzene to ethylcyclohexane upon anion metathesis. According to X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS) analyses, these effects could originate not only from the relative hydrophobicity and solvation of the PIL corona but also from the nature and strength of the PIL-Ru interactions.

3.
Biomacromolecules ; 22(11): 4544-4551, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34618426

ABSTRACT

Commercially available lipase from Pseudomonas stutzeri (lipase TL) is investigated as a biocatalyst for the formation of an acid-epoxy chemical network. Molecular model reactions are performed by reacting 2-phenyl glycidyl ether and hexanoic acid in bulk, varying two parameters: temperature and water content. Characterizations of the formed products by 1H NMR spectroscopy and gas chromatography-mass spectrometry combined with enzymatic assays confirm that lipase TL is able to simultaneously promote acid-epoxy addition and transesterification reactions below 100 °C and solely the acid-epoxy addition after denaturation at T > 100 °C. A prototype bio-based chemical network with ß-hydroxyester links was obtained using resorcinol diglycidyl ether and sebacic acid as monomers with lipase TL as catalyst. Differential scanning calorimetry, attenuated total reflection, and swelling analysis confirm gelation of the network.


Subject(s)
Epoxy Resins , Lipase , Catalysis , Esterification , Lipase/metabolism , Temperature
4.
Chem Commun (Camb) ; 52(62): 9719-22, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27411406

ABSTRACT

The ring-opening polymerization of N-tosyl aziridines, in the presence of 1,3-bis(isopropyl)-4,5(dimethyl)imidazol-2-ylidene as an organocatalyst and an N-tosyl secondary amine as initiator mimicking the growing chain, provides the first metal-free route to well defined poly(aziridine)s (PAz) and related PAz-based block copolymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...