Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(14): 9567-9576, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33869937

ABSTRACT

Carbonate formation is a prevailing challenge in synthesis of BaTiO3, especially through wet chemical synthesis routes. In this work, we report the phase evolution during thermal annealing of an aqueous BaTiO3 precursor solution, with a particular focus on the structures and role of intermediate phases forming prior to BaTiO3 nucleation. In situ infrared spectroscopy, in situ X-ray total scattering, and transmission electron microscopy were used to reveal the decomposition, pyrolysis, and crystallization reactions occurring during thermal processing. Our results show that the intermediate phases consist of nanosized calcite-like BaCO3 and BaTi4O9 phases and that the intimate mixing of these along with their metastability ensures complete decomposition to form BaTiO3 above 600 °C. We demonstrate that the stability of the intermediate phases is dependent on the processing atmosphere, where especially enhanced CO2 levels is detrimental for the formation of phase pure BaTiO3.

2.
J Synchrotron Radiat ; 27(Pt 5): 1209-1217, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32876595

ABSTRACT

Understanding the crystallization process for chemical solution deposition (CSD) processed thin films is key in designing the fabrication strategy for obtaining high-quality devices. Here, an in situ sample environment is presented for studying the crystallization of CSD processed thin films under typical processing parameters using near-grazing-incidence synchrotron X-ray diffraction. Typically, the pyrolysis is performed in a rapid thermal processing (RTP) unit, where high heating rates, high temperatures and atmosphere control are the main control parameters. The presented in situ setup can reach heating rates of 20°C s-1 and sample surface temperatures of 1000°C, comparable with commercial RTP units. Three examples for lead-free ferroelectric thin films are presented to show the potential of the new experimental set-up: high temperature, for crystallization of highly textured Sr0.4Ba0.6Nb2O6 on a SrTiO3 (001) substrate, high heating rate, revealing polycrystalline BaTiO3, and atmosphere control with 25% CO2, for crystallization of BaTiO3. The signal is sufficient to study a single deposited layer (≥10 nm for the crystallized film) which then defines the interface between the substrate and thin film for the following layers. A protocol for processing the data is developed to account for a thermal shift of the entire setup, including the sample, to allow extraction of maximum information from the refinement, e.g. texture. The simplicity of the sample environment allows for the future development of even more advanced measurements during thin-film processing under non-ambient conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...