Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cell ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38981480

ABSTRACT

Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.

2.
Am J Clin Nutr ; 115(6): 1569-1576, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35134821

ABSTRACT

BACKGROUND: Continuous glucose monitor (CGM) devices enable characterization of individuals' glycemic variation. However, there are concerns about their reliability for categorizing glycemic responses to foods that would limit their potential application in personalized nutrition recommendations. OBJECTIVES: We aimed to evaluate the concordance of 2 simultaneously worn CGM devices in measuring postprandial glycemic responses. METHODS: Within ZOE PREDICT (Personalised Responses to Dietary Composition Trial) 1, 394 participants wore 2 CGM devices simultaneously [n = 360 participants with 2 Abbott Freestyle Libre Pro (FSL) devices; n = 34 participants with both FSL and Dexcom G6] for ≤14 d while consuming standardized (n = 4457) and ad libitum (n = 5738) meals. We examined the CV and correlation of the incremental area under the glucose curve at 2 h (glucoseiAUC0-2 h). Within-subject meal ranking was assessed using Kendall τ rank correlation. Concordance between paired devices in time in range according to the American Diabetes Association cutoffs (TIRADA) and glucose variability (glucose CV) was also investigated. RESULTS: The CV of glucoseiAUC0-2 h for standardized meals was 3.7% (IQR: 1.7%-7.1%) for intrabrand device and 12.5% (IQR: 5.1%-24.8%) for interbrand device comparisons. Similar estimates were observed for ad libitum meals, with intrabrand and interbrand device CVs of glucoseiAUC0-2 h of 4.1% (IQR: 1.8%-7.1%) and 16.6% (IQR: 5.5%-30.7%), respectively. Kendall τ rank correlation showed glucoseiAUC0-2h-derived meal rankings were agreeable between paired CGM devices (intrabrand: 0.9; IQR: 0.8-0.9; interbrand: 0.7; IQR: 0.5-0.8). Paired CGMs also showed strong concordance for TIRADA with a intrabrand device CV of 4.8% (IQR: 1.9%-9.8%) and an interbrand device CV of 3.2% (IQR: 1.1%-6.2%). CONCLUSIONS: Our data demonstrate strong concordance of CGM devices in monitoring glycemic responses and suggest their potential use in personalized nutrition.This trial was registered at clinicaltrials.gov as NCT03479866.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Diet , Glucose , Humans , Meals , Reproducibility of Results
3.
Gut ; 70(9): 1665-1674, 2021 09.
Article in English | MEDLINE | ID: mdl-33722860

ABSTRACT

BACKGROUND AND AIMS: Gut transit time is a key modulator of host-microbiome interactions, yet this is often overlooked, partly because reliable methods are typically expensive or burdensome. The aim of this single-arm, single-blinded intervention study is to assess (1) the relationship between gut transit time and the human gut microbiome, and (2) the utility of the 'blue dye' method as an inexpensive and scalable technique to measure transit time. METHODS: We assessed interactions between the taxonomic and functional potential profiles of the gut microbiome (profiled via shotgun metagenomic sequencing), gut transit time (measured via the blue dye method), cardiometabolic health and diet in 863 healthy individuals from the PREDICT 1 study. RESULTS: We found that gut microbiome taxonomic composition can accurately discriminate between gut transit time classes (0.82 area under the receiver operating characteristic curve) and longer gut transit time is linked with specific microbial species such as Akkermansia muciniphila, Bacteroides spp and Alistipes spp (false discovery rate-adjusted p values <0.01). The blue dye measure of gut transit time had the strongest association with the gut microbiome over typical transit time proxies such as stool consistency and frequency. CONCLUSIONS: Gut transit time, measured via the blue dye method, is a more informative marker of gut microbiome function than traditional measures of stool consistency and frequency. The blue dye method can be applied in large-scale epidemiological studies to advance diet-microbiome-health research. Clinical trial registry website https://clinicaltrials.gov/ct2/show/NCT03479866 and trial number NCT03479866.


Subject(s)
Gastrointestinal Microbiome/physiology , Gastrointestinal Transit , Adult , Akkermansia , Bacteroides , Bacteroidetes , Biomarkers , Coloring Agents , Feces/microbiology , Female , Gastrointestinal Transit/genetics , Gastrointestinal Transit/physiology , Humans , Male , Metagenomics , Middle Aged
4.
Thorax ; 76(7): 723-725, 2021 07.
Article in English | MEDLINE | ID: mdl-33376145

ABSTRACT

Understanding the geographical distribution of COVID-19 through the general population is key to the provision of adequate healthcare services. Using self-reported data from 1 960 242 unique users in Great Britain (GB) of the COVID-19 Symptom Study app, we estimated that, concurrent to the GB government sanctioning lockdown, COVID-19 was distributed across GB, with evidence of 'urban hotspots'. We found a geo-social gradient associated with predicted disease prevalence suggesting urban areas and areas of higher deprivation are most affected. Our results demonstrate use of self-reported symptoms data to provide focus on geographical areas with identified risk factors.


Subject(s)
COVID-19/epidemiology , Mobile Applications , Pneumonia, Viral/epidemiology , Self Report , Adult , Female , Humans , Male , Mass Screening/methods , Middle Aged , Pneumonia, Viral/virology , Prevalence , Risk Factors , United Kingdom/epidemiology
6.
Nat Med ; 26(6): 964-973, 2020 06.
Article in English | MEDLINE | ID: mdl-32528151

ABSTRACT

Metabolic responses to food influence risk of cardiometabolic disease, but large-scale high-resolution studies are lacking. We recruited n = 1,002 twins and unrelated healthy adults in the United Kingdom to the PREDICT 1 study and assessed postprandial metabolic responses in a clinical setting and at home. We observed large inter-individual variability (as measured by the population coefficient of variation (s.d./mean, %)) in postprandial responses of blood triglyceride (103%), glucose (68%) and insulin (59%) following identical meals. Person-specific factors, such as gut microbiome, had a greater influence (7.1% of variance) than did meal macronutrients (3.6%) for postprandial lipemia, but not for postprandial glycemia (6.0% and 15.4%, respectively); genetic variants had a modest impact on predictions (9.5% for glucose, 0.8% for triglyceride, 0.2% for C-peptide). Findings were independently validated in a US cohort (n = 100 people). We developed a machine-learning model that predicted both triglyceride (r = 0.47) and glycemic (r = 0.77) responses to food intake. These findings may be informative for developing personalized diet strategies. The ClinicalTrials.gov registration identifier is NCT03479866.


Subject(s)
Blood Glucose/metabolism , Gastrointestinal Microbiome , Insulin/metabolism , Nutrients , Postprandial Period , Triglycerides/metabolism , Adolescent , Adult , Aged , C-Peptide/metabolism , Dietary Carbohydrates , Dietary Fats , Dietary Fiber , Dietary Proteins , Female , Genetic Variation , Glucose Tolerance Test , Healthy Volunteers , Humans , Individuality , Machine Learning , Male , Middle Aged , Polymorphism, Single Nucleotide , Precision Medicine , Young Adult
7.
Sci Rep ; 9(1): 15238, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31645577

ABSTRACT

The impact of fluorescence microscopy has been limited by the difficulties of expressing measurements of fluorescent proteins in numbers of molecules. Absolute numbers enable the integration of results from different laboratories, empower mathematical modelling, and are the bedrock for a quantitative, predictive biology. Here we propose an estimator to infer numbers of molecules from fluctuations in the photobleaching of proteins tagged with Green Fluorescent Protein. Performing experiments in budding yeast, we show that our estimates of numbers agree, within an order of magnitude, with published biochemical measurements, for all six proteins tested. The experiments we require are straightforward and use only a wide-field fluorescence microscope. As such, our approach has the potential to become standard for those practising quantitative fluorescence microscopy.

8.
Bioinformatics ; 34(1): 88-96, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28968663

ABSTRACT

Motivation: Although high-content image cytometry is becoming increasingly routine, processing the large amount of data acquired during time-lapse experiments remains a challenge. The majority of approaches for automated single-cell segmentation focus on flat, uniform fields of view covered with a single layer of cells. In the increasingly popular microfluidic devices that trap individual cells for long term imaging, these conditions are not met. Consequently, most techniques for segmentation perform poorly. Although potentially constraining the generalizability of software, incorporating information about the microfluidic features, flow of media and the morphology of the cells can substantially improve performance. Results: Here we present DISCO (Data Informed Segmentation of Cell Objects), a framework for using the physical constraints imposed by microfluidic traps, the shape based morphological constraints of budding yeast and temporal information about cell growth and motion to allow tracking and segmentation of cells in microfluidic devices. Using manually curated datasets, we demonstrate substantial improvements in both tracking and segmentation when compared with existing software. Availability and implementation: The MATLAB code for the algorithm and for measuring performance is available at https://github.com/pswain/segmentation-software and the test images and the curated ground-truth results used for comparing the algorithms are available at http://datashare.is.ed.ac.uk/handle/10283/2002. Contact: mcrane2@uw.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Cell Proliferation , Image Cytometry/methods , Image Processing, Computer-Assisted/methods , Saccharomycetales/physiology , Saccharomycetales/cytology , Single-Cell Analysis/methods , Software
9.
PLoS One ; 9(6): e100042, 2014.
Article in English | MEDLINE | ID: mdl-24950344

ABSTRACT

Recognition of the importance of cell-to-cell variability in cellular decision-making and a growing interest in stochastic modeling of cellular processes has led to an increased demand for high density, reproducible, single-cell measurements in time-varying surroundings. We present ALCATRAS (A Long-term Culturing And TRApping System), a microfluidic device that can quantitatively monitor up to 1000 cells of budding yeast in a well-defined and controlled environment. Daughter cells are removed by fluid flow to avoid crowding allowing experiments to run for over 60 hours, and the extracellular media may be changed repeatedly and in seconds. We illustrate use of the device by measuring ageing through replicative life span curves, following the dynamics of the cell cycle, and examining history-dependent behaviour in the general stress response.


Subject(s)
Microfluidic Analytical Techniques/methods , Saccharomycetales/cytology , Single-Cell Analysis/methods , Cell Division , Injections , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...