Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Commun Chem ; 7(1): 124, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834765

ABSTRACT

The interplay between constituent localized and itinerant electrons of metal clusters defines their physical and chemical properties. In turn, the electronic and geometrical structures are strongly entwined and exhibit strong size-dependent variations. Current understanding of low-energy excited states of metal clusters relies on stand-alone theoretical investigations and few comparisons with measured properties, since direct identification of low-lying states is lacking hitherto. Here, we report on the measurement of low-lying electronic transitions in cationic cobalt clusters using infrared photofragmentation spectroscopy. Broad and size-dependent absorption features were observed within 0.056 - 0.446 eV, well above the energies of the sharp absorption bands caused by cluster vibrations. Complementary time-dependent density functional theory calculations reproduce the main observed absorption features, providing direct evidence that they correspond to transitions between electronic states of mainly d-character, arising from the open d-shells of the Co atoms and the high spin multiplicity of the clusters.

2.
Phys Chem Chem Phys ; 26(15): 11445-11458, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38572552

ABSTRACT

A combination of infrared multiple-photon dissociation (IRMPD) action spectroscopy and quantum chemical calculations was employed to investigate the [M,C,2H]+ (M = Ru and Rh) species. These ions were formed by reacting laser ablated M+ ions with oxirane (ethylene oxide, c-C2H4O) in a room-temperature ion trap. IRMPD spectra for the Ru species exhibit one major band and two side bands, whereas spectra for the Rh species contain more distinct bands. Comparison with density functional theory (DFT), coupled-cluster (CCSD), and equation-of-motion spin-flip CCSD (EOM-SF-CCSD) calculations allows assignment of the [M,C,2H]+ structures. For the spectrum of [Ru,C,2H]+, a combination of HRuCH+ and RuCH2+ structures reproduces the observed spectrum at all levels of theory. The well-resolved spectrum of [Rh,C,2H]+ could not be assigned unambiguously to any calculated structure using DFT approaches. The EOM-SF-CCSD calculations showed that the ground-state surface has multireference electronic character, and symmetric carbenes in both the 1A1 and 3A2 states are needed to reproduce the observed spectrum.

3.
Phys Chem Chem Phys ; 26(13): 9948-9962, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38497938

ABSTRACT

A combination of IR multiple-photon dissociation (IRMPD) action spectroscopy and quantum chemical calculations was employed to investigate the [M,C,2H]+ (M = Fe and Co) species. These were formed by reacting laser ablated M+ ions with oxirane (ethylene oxide, c-C2H4O) in a room temperature ion trap. IRMPD spectra for the Fe and Co species are very similar and exhibit one major band. Comparison with density functional theory (DFT) and coupled cluster with single and double excitations (CCSD) calculations allows assignment of the spectra to MCH2+ carbene structures. For these 3d transition metal systems, experimental IRMPD spectra compare relatively poorly with DFT calculated IR spectra, but CCSD calculated spectra are a much better match primarily because the M-C stretch gains significant intensity. The origins of this behavior are explored in some detail. The present results are also compared to previous results for the 4d and 5d congeners and the periodic trends in these structures are evaluated.

4.
J Phys Chem C Nanomater Interfaces ; 127(50): 24158-24167, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38148851

ABSTRACT

Copper-based catalysts gain activity through the presence of poorly coordinated Cu atoms and incomplete oxidation at the surface. The catalytic mechanisms can in principle be observed by controlled dosing of reactants to single-crystal substrates. However, the interconnected influences of surface defects, partial oxidation, and adsorbate coverage present a large matrix of conditions that have not been fully explored in the literature. We recently characterized oxygen and carbon monoxide coadsorption on Cu(111), a nominally defect-free surface, and now extend our study to the stepped surface Cu(211). Temperature-programmed desorption of CO adsorbed to bare metal surfaces confirms that two sites dominate desorption from a saturated layer: atop terrace atoms of local (111) character and atop step edge atoms with CO bound more strongly to the latter. At low coverage, discrete CO resonances in reflection adsorption infrared spectra can be assigned to these sites: 2077 cm-1 for extended (111) terraces, 2093 cm-1 for step sites, and additional kink-adsorbed molecules at 2110 cm-1. With increasing coverage, in contrast to Cu(111), the infrared spectral features on Cu(211) evolve and shift as a consequence of dipole-dipole coupling between differentially occupied types of sites. Auger electron spectroscopy shows that exposure to background O2 oxidizes the (211) surface at a rate nearly 1 order of magnitude greater than (111); we argue that the resulting surface is stoichiometric Cu2O, as previously found for Cu(111). This oxide binds CO less strongly than the bare metal and the underlying crystal cut continues to influence the adsorption sites available to CO. On oxidized (111) terraces, broad absorption peaks at 2115-2120 cm-1; on oxidized Cu(211), CO adsorbed to step sites appears as a resolved secondary peak at 2144 cm-1. This suite of spectroscopic signatures, obtained under carefully controlled conditions, will help to determine the origin and fate of adsorbed species in future studies of reaction mechanisms on copper.

5.
Phys Chem Chem Phys ; 25(46): 32166-32172, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37986571

ABSTRACT

The interaction of free manganese oxide clusters, MnxOy+ (x = 1-9, y = 0-12), with formic acid was studied via infrared multiple-photon dissociation (IR-MPD) spectroscopy together with calculations using density functional theory (DFT). Clusters containing only one Mn atom, such as MnO2+ and MnO4+, bind formic acid as an intact molecule in both the cis- and trans-configuration. In contrast, all clusters containing two or more manganese atoms deprotonate the acid's hydroxyl group. The coordination of the resulting formate group is strongly cluster-size-dependent according to supporting DFT calculations for selected model systems. For Mn2O2+ the co-existence of two isomers with the formate bound in a bidentate bridging and chelating configurations, respectively, is found, whereas for Mn2O4+ the bidentate chelating configuration is preferred. In contrast, the bidentate bridging structure is energetically considerably more favorable for Mn4O4+. This binding motif stabilizes the 2D ring structure of the core of the Mn4O4+ cluster with respect to the 3D cubic geometry of the Mn4O4+ cluster core.

6.
J Am Chem Soc ; 145(40): 22243-22251, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37757468

ABSTRACT

Buckminsterfullerene C60 has received extensive research interest since its discovery. In addition to its interesting intrinsic properties of exceptional stability and electron-accepting ability, the broad chemical tunability by decoration or substitution on the C60-fullerene surface makes it a fascinating molecule. However, to date, there is uncertainty about the binding location of such decorations on the C60 surface, even for a single adsorbed metal atom. In this work, we report the gas-phase synthesis of the C60V+ complex and its in situ characterization by mass spectrometry and infrared spectroscopy with the help of quantum chemical calculations and molecular dynamics simulations. We identify the most probable binding position of a vanadium cation on C60 above a pentagon center in an η5-fashion, demonstrate a high thermal stability for this complex, and explore the bonding nature between C60 and the vanadium cation, revealing that large orbital and electrostatic interactions lie at the origin of the stability of the η5-C60V+ complex.

7.
J Phys Chem A ; 127(15): 3402-3411, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37040467

ABSTRACT

Transition metals are important in various industrial applications including catalysis. Due to the current concentration of CO2 in the atmosphere, various ways for its capture and utilization are investigated. Here, we study the activation of CO2 and H2O at [NbO3]- in the gas phase using a combination of infrared multiple photon dissociation spectroscopy and density functional theory calculations. In the experiments, Fourier-transform ion cyclotron resonance mass spectrometry is combined with tunable IR laser light provided by the intracavity free-electron laser FELICE or optical parametric oscillator-based table-top laser systems. We present spectra of [NbO3]-, [NbO2(OH)2]-, [NbO2(OH)2]-(H2O) and [NbO(OH)2(CO3)]- in the 240-4000 cm-1 range. The measured spectra and observed dissociation channels together with quantum chemical calculations confirm that upon interaction with a water molecule, [NbO3]- is transformed to [NbO2(OH)2]- via a barrierless reaction. Reaction of this product with CO2 leads to [NbO(OH)2(CO3)]- with the formation of a [CO3] moiety.

8.
Faraday Discuss ; 242(0): 252-268, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36325973

ABSTRACT

Copper clusters on carbide surfaces have shown a high catalytic activity towards methanol formation. To understand the interaction between CO2 and the catalytically active sites during this process and the role that carbon atoms could play in this, they are modeled by copper clusters, with carbon atoms incorporated. The formed clusters CunCm- (n = 3-10, m = 1-2) are reacted with CO2 and investigated by IR multiple-photon dissociation (IR-MPD) spectroscopy to probe the degree of CO2 activation. IR spectra for the reaction products [CunC·CO2]-, (n = 6-10), and [CunC2·CO2]-, (n = 3-8) are compared to reference spectra recorded for products formed when reacting the same cluster sizes with CO, and with density functional theory (DFT) calculated spectra. The results reveal a size- and carbon load-dependent activation and dissociation of CO2. The complexes [CunC·CO2]- with n = 6 and 10 show predominantly molecular activation of CO2, while those with n = 7-9 show only dissociative adsorption. The addition of the second carbon to the cluster leads to the exclusive molecular activation of the CO2 on all measured cluster sizes, except for Cu5C2- where CO2 dissociates. Combining these findings with DFT calculations leads us to speculate that at lower carbon-to-metal ratios (CMRs), the C can act as an oxygen anchor facilitating the OCO bond rupture, whereas at higher CMRs the carbon atoms increasingly attract negative charge, reducing the Cu cluster's ability to donate electron density to CO2, and consequently its ability to activate CO2.

11.
Chem Commun (Camb) ; 59(2): 179-182, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36416163

ABSTRACT

The closed-shell nature of Xe atoms precludes the formation of Xe-Xe bonds other than based on van der Waals interactions. Here, we present experimental evidence showing that the complexation of Xe atoms to a Au+ ion leads to stabilization of a Xe-Xe interaction going beyond purely dispersive. Infrared spectroscopy is used to identify the geometry of AuXe3+ as a linear structure in which two Xe atoms form a direct bond, instead of an expected geometry in which three Xe atoms coordinate directly with a central Au+ ion. Density functional theory and coupled-cluster calculations show that this bond possesses an enhanced orbital mixture, in comparison to that in the isolated Xe2 dimer. The calculations are validated by observed vibrational modes at 134 and 163 cm-1 for AuXe3+, and a AuXe2+-Xe bond energy of 0.04 ± 0.01 eV estimated from the temperature-dependent formation.

12.
ACS Earth Space Chem ; 6(10): 2465-2470, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36303718

ABSTRACT

Silicates are ubiquitously found as small dust grains throughout the universe. These particles are frequently subject to high-energy processes and subsequent condensation in the interstellar medium (ISM), where they are broken up into many ultrasmall silicate fragments. These abundant molecular-sized silicates likely play an important role in astrochemistry. By approximately mimicking silicate dust grain processing occurring in the diffuse ISM by ablation/cooling of a Mg/Si source material in the presence of O2, we observed the creation of stable clusters based on discrete pyroxene monomers (MgSiO3 +), which traditionally have only been considered possible as constituents of bulk silicate materials. Our study suggests that such pyroxene monomer-based clusters could be highly abundant in the ISM from the processing of larger silicate dust grains. A detailed analysis, by infrared multiple-photon dissociation (IR-MPD) spectroscopy and density functional theory (DFT) calculations, reveals the structures and properties of these monomeric silicate species. We find that the clusters interact strongly with oxygen, with some stable cluster isomers having a silicate monomeric core bound to an ozone-like moiety. The general high tendency of these monomeric silicate species to strongly adsorb O2 molecules also suggests that they could be relevant to the observed and unexplained depletion of oxygen in the ISM. We further find clusters where a Mg atom is bound to the MgSiO3 monomer core. These species can be considered as the simplest initial step in monomer-initiated nucleation, indicating that small ionized pyroxenic clusters could also assist in the reformation of larger silicate dust grains in the ISM.

13.
J Phys Chem A ; 126(38): 6668-6677, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36126291

ABSTRACT

The adsorption forms of NO on Irn+ (n = 3-6) clusters were investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations. Spectral features indicative both for molecular NO adsorption (the NO stretching vibration in the 1800-1900 cm-1 range) and for dissociative NO adsorption (the terminal Ir-O vibration around 940 cm-1) were observed, elucidating the co-existence of molecular and dissociative adsorption of NO. In all calculated structures for molecular adsorption, NO is adsorbed via the N atom on on-top sites. For dissociative adsorption, the O atom adsorbs exclusively on on-top sites (µ1) of the clusters, whereas the N atom is found on either a bridge (µ2) or a hollow (µ3) site. For Ir5+ and Ir6+, the N atom is also found on the on-top sites. The observed propensity for NO dissociation on Irn+ (n = 3-6) is higher than that for Rh6+, which can be explained by the higher metal-oxygen bond strengths for iridium.

14.
J Phys Chem C Nanomater Interfaces ; 126(31): 13114-13121, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35983315

ABSTRACT

In a study preliminary to investigating CO2 dissociation, we report our results on oxygen and carbon monoxide coadsorption on Cu(111). We use reflection adsorption infrared spectroscopy and Auger electron spectroscopy to characterize and quantify adsorbed species. On clean Cu(111), the CO internal stretch mode appears initially at 2077 cm-1 for a surface temperature of ∼80 K. We accurately reproduce the previously determined redshift of the absorption band with increasing CO coverage. We subsequently oxidize the surface by exposure to O2 at 300 K to ensure O2 dissociation. The band's frequency and line shape of subsequently adsorbed CO at ∼80 K are not affected. However, the maximum absorbance and integrated peak intensities drop with increasing O coverage. The data suggest that CO is not adsorbed near O, likely as a consequence of the mechanism of Cu(111) surface oxidation by O2 at 300 K. We discuss whether our RAIRS results may be used to quantify CO2 dissociation in the zero-coverage limit.

15.
Inorg Chem ; 61(29): 11252-11260, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35819891

ABSTRACT

We spectroscopically investigated the activation products resulting from reacting one and multiple methane molecules with Pt+ ions. Pt+ ions were formed by laser ablation of a metal target and were cooled to the electronic ground state in a supersonic expansion. The ions were then transferred to a room temperature ion trap, where they were reacted with methane at various partial pressures in an argon buffer gas. Product masses observed were [Pt,C,2H]+, [Pt,2C,4H]+, [Pt,4C,8H]+, and [Pt,2C,O,6H]+, which were mass-isolated and characterized using infrared multiple-photon dissociation (IRMPD) spectroscopy employing the free electron laser for intra-cavity experiments (FELICE). The spectra for [Pt,2C,4H]+ and [Pt,4C,8H]+ have several well-defined bands and, when compared to density functional theory-calculated spectra for several possible product structures, lead to unambiguous assignments to species with ethene ligands, proving Pt+-mediated C-C coupling involving up to four methane molecules. These findings contrast with earlier experiments where Pt+ ions were reacted in a flow-tube type reaction channel at significantly higher pressures of helium buffer gas, resulting in the formation of a Pt(CH3)2+ product. Our DFT calculations show a reaction barrier of +0.16 eV relative to the PtCH2+ + CH4 reactants that are required for C-C coupling. The different outcomes in the two experiments suggest that the higher pressure in the earlier work could kinetically trap the dimethyl product, whereas the lower pressure and longer residence times in the ion trap permit the reaction to proceed, resulting in ethene formation and dihydrogen elimination.

16.
J Phys Chem Lett ; 13(19): 4309-4314, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35533018

ABSTRACT

Noble gases are usually seen as utterly inert, likewise gold, which is typically conceived as the noblest of all metals. While one may expect that noble gases bind to gold via dispersion interactions only, strong bonds can be formed between noble gas atoms and small gold clusters. We combine mass spectrometry, infrared spectroscopy, and density functional theory calculations to address the bonding nature between Aun+ (n ≤ 4) clusters and Ar, Kr, and Xe. We unambiguously determine the geometries and quantitatively uncover the bonding nature in AunNgm+ (Ng = Ar, Kr, Xe) complexes. Each Au cluster can form covalent bonds with atop bound noble gas atoms, with strengths that increase with the noble gas atomic radius. This is demonstrated by calculated adsorption energies, Bader electron charges, and analysis of the electron density. The covalent bonding character, however, is limited to the atop-coordinated Ng atoms.

17.
J Am Soc Mass Spectrom ; 33(8): 1393-1400, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35411768

ABSTRACT

The interaction of CH4 with cationic copper clusters has been studied with infrared-multiple photon dissociation (IRMPD) spectroscopy. Cun+ (n = 2-4) formed by laser ablation were reacted with CH4. The formed complexes were irradiated with the IR light of the free-electron laser for intracavity experiments (FELICE), and the fragments were mass-analyzed with a reflectron time-of-flight mass spectrometer. The structures of the Cun+-CH4 complexes are assigned on the basis of comparison between the resulting IRMPD spectra to spectra of different isomers calculated with density functional theory (DFT). For all sizes n, the structure found is one with molecularly adsorbed CH4. Only slight deformations of the CH4 molecule have been identified upon adsorption on the clusters, which results in redshifts of the spectroscopic bands. This deformation can be explained by charge transfer from the cluster to the adsorbed methane molecule.

18.
Phys Chem Chem Phys ; 24(13): 7595-7610, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35297928

ABSTRACT

The study of reactions relevant to heterogeneous catalysis on the surface of well-defined metal clusters with full control over the number of consituent atoms and elemental composition can lead to a detailed insight into the interactions between metal and reactants. We here review experimental and theoretical studies involving the adsorption of NO molecules on mostly rhodium-based clusters under near-thermal conditions in a molecular beam. We show how IR spectrosopic characterization can give information on the binding nature of NO to the clusters for at least the first three NO molecules. The complementary technique of thermal desorption spectrometry reveals at what temperatures multiple NO molecules on the cluster surface desorb or combine to form rhodium oxides followed by N2 elimination. Variation of the cluster elemental composition can be a powerful method to identify how the propensity of the critical first step of NO dissociation can be increased. The testing of such concepts with atomic detail can be of great help in guiding the choices in rational catalyst design.

19.
J Phys Chem A ; 126(1): 36-43, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34978823

ABSTRACT

The adsorption of an NO molecule on a cationic iridium-doped rhodium cluster, Rh5Ir+, was investigated by infrared multiple photon dissociation spectroscopy (IRMPD) of Rh5IrNO+·Arp complexes in the 300-2000 cm-1 spectral range, where the Ar atoms acted as a messenger signaling IR absorption. Complementary density functional theory (DFT) calculations predicted two near-isoenergetic structures as the putative global minimum: one with NO adsorbed in molecular form in the on-top configuration on the Ir atom in Rh5Ir+, and one where NO is dissociated with the O atom bound to the Ir atom in the on-top configuration and the N atom on a hollow site formed by three Rh atoms. A comparison between the experimental IRMPD spectrum of Rh5IrNO+ and calculated spectra indicated that NO mainly adsorbs molecularly on Rh5Ir+, but evidence was also found for structures with dissociatively adsorbed NO. The estimated fraction of Rh5IrNO+ structures with dissociatively adsorbed NO is approximately 10%, which was higher than that found for Rh6+, but lower than that for Ir6+. The DFT calculations indicated the existence of an energy barrier in the NO dissociation pathway that is exothermic with respect to the reactants, which was considered to prevent NO from dissociating readily on Rh5Ir+. The height of the barrier is lower than that for NO dissociation over Rh6+, which is attributed to the higher binding energy of atomic O to the Ir atom in Rh5Ir+ than to a Rh atom in Rh6+.

20.
Mass Spectrom Rev ; 41(4): 513-528, 2022 07.
Article in English | MEDLINE | ID: mdl-34008884

ABSTRACT

This review is devoted to ion spectroscopy studies of complexes relevant for the understanding of methane activation with metal ions and clusters. Methane activation starts with the formation of a complex with a metal ion. The degree of the interaction between an intact methane molecule and the ion can be monitored by the perturbations of C-H stretch vibrations in the methane molecule. Binding mediated by the electrostatic interaction results in a η3 type coordination of methane. In contrast, binding governed by orbital interactions results in a η2 type coordination of methane. We further review the spectroscopic characterization of activation products of metal-methane reactions, such as the metal-carbene and carbyne products resulting from the interaction of selected 5d metals with methane. The focus of recent research in the field has shifted towards the investigation of interactions between methane and metal clusters. We show examples highlighting that metal clusters can be more reactive in methane activation reactions.


Subject(s)
Metals , Methane , Ions , Mass Spectrometry , Methane/chemistry , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...