Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Bioelectromagnetics ; 36(1): 66-76, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25399806

ABSTRACT

Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology.


Subject(s)
Brain/radiation effects , Cell Phone , Head/anatomy & histology , Head/radiation effects , Radio Waves , Adult , Aged , Computer Simulation , Female , Humans , Male , Middle Aged , Models, Anatomic , Phantoms, Imaging , Radiometry , Uncertainty
2.
Health Phys ; 107(5): 369-81, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25271926

ABSTRACT

This study analyzes the exposure of pregnant women and their fetuses in three different gestational stages to electromagnetic radiation in the radio frequency range in the near- and the far-field using numerical modeling. For far-field exposure, the power density at which the basic restriction for the whole body SAR is reached is calculated for both the mother and the fetus at whole body resonance and at frequencies between 450 MHz and 2,450 MHz. The near-field exposure is assessed at 450 MHz, 900 MHz, and 2,450 MHz using half wavelength dipoles as generic sources located at different locations around the abdomen of the mother. For the investigated cases, the exposure of the mother is always below or on the order of magnitude of the basic restriction for exposure at the reference level. When applying the reference levels for the general public, the fetus is sufficiently shielded by the mother. However, the basic restrictions for general public exposure can be exceeded in the fetus when the mother is exposed at reference levels for occupational conditions. For plane wave exposure at occupational levels, the whole body SAR in the fetus can exceed the basic restrictions for the general population by at least 1.8 dB, and in the near-field of professional devices, the 10 g SAR can be non-compliant with the product standard for the general public by > 3.5 dB.


Subject(s)
Fetus/radiation effects , Models, Anatomic , Radiation Monitoring/methods , Radio Waves , Computer Simulation , Computer-Aided Design , Electromagnetic Fields , Electromagnetic Radiation , Female , Gestational Age , Humans , Phantoms, Imaging , Pregnancy , Radiation Dosage , Reference Values , Time Factors
3.
Int J Hyperthermia ; 30(3): 184-91, 2014 May.
Article in English | MEDLINE | ID: mdl-24773040

ABSTRACT

Magnetic resonance thermometry (MRT) offers non-invasive temperature imaging and can greatly contribute to the effectiveness of head and neck hyperthermia. We therefore wish to redesign the HYPERcollar head and neck hyperthermia applicator for simultaneous radio frequency (RF) heating and magnetic resonance thermometry. In this work we tested the feasibility of this goal through an exploratory experiment, in which we used a minimally modified applicator prototype to heat a neck model phantom and used an MR scanner to measure its temperature distribution. We identified several distorting factors of our current applicator design and experimental methods to be addressed during development of a fully MR compatible applicator. To allow MR imaging of the electromagnetically shielded inside of the applicator, only the lower half of the HYPERcollar prototype was used. Two of its antennas radiated a microwave signal (150 W, 434 MHz) for 11 min into the phantom, creating a high gradient temperature profile (ΔTmax = 5.35 °C). Thermal distributions were measured sequentially, using drift corrected proton resonance frequency shift-based MRT. Measurement accuracy was assessed using optical probe thermometry and found to be about 0.4 °C (0.1-0.7 °C). Thermal distribution size and shape were verified by thermal simulations and found to have a good correlation (r(2 )= 0.76).


Subject(s)
Head and Neck Neoplasms/therapy , Hyperthermia, Induced , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Head and Neck Neoplasms/pathology , Humans , Protons
4.
Int J Hyperthermia ; 30(2): 142-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24571177

ABSTRACT

PURPOSE: Magnetic resonance thermometry (MRT) is an attractive means to non-invasively monitor in vivo temperature during head and neck hyperthermia treatments because it can provide multi-dimensional temperature information with high spatial resolution over large regions of interest. However, validation of MRT measurements in a head and neck clinical set-up is crucial to ensure the temperature maps are accurate. Here we demonstrate a unique approach for temperature probe sensor localisation in head and neck hyperthermia test phantoms. METHODS: We characterise the proton resonance frequency shift temperature coefficient and validate MRT measurements in an oil-gel phantom by applying a combination of MR imaging and 3D spline fitting for accurate probe localisation. We also investigate how uncertainties in both the probe localisation and the proton resonance frequency shift (PRFS) thermal coefficient affect the registration of fibre-optic reference temperature probe and MRT readings. RESULTS: The method provides a two-fold advantage of sensor localisation and PRFS thermal coefficient calibration. We provide experimental data for two distinct head and neck phantoms showing the significance of this method as it mitigates temperature probe localisation errors and thereby increases accuracy of MRT validation results. CONCLUSIONS: The techniques presented here may be used to simplify calibration experiments that use an interstitial heating device, or any heating method that provides rapid and spatially localised heat distributions. Overall, the experimental verification of the data registration and PRFS thermal coefficient calibration technique provides a useful benchmarking method to maximise MRT accuracy in any similar context.


Subject(s)
Phantoms, Imaging , Thermometry/methods , Body Temperature , Head , Humans , Magnetic Resonance Spectroscopy , Muscles , Neck
5.
Int J Hyperthermia ; 29(4): 346-57, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23672453

ABSTRACT

Abstract Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44 °C, significantly enhance radiotherapy and chemotherapy effectiveness [1]. Driven by the developments in computational techniques and computing power, personalised hyperthermia treatment planning (HTP) has matured and has become a powerful tool for optimising treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical set-ups are now being performed to achieve patient-specific treatment optimisation. In addition, extensive studies aimed to properly implement novel HT tools and techniques, and to assess the quality of HT, are becoming more common. In this paper, we review the simulation tools and techniques developed for clinical hyperthermia, and evaluate their current status on the path from 'model' to 'clinic'. In addition, we illustrate the major techniques employed for validation and optimisation. HTP has become an essential tool for improvement, control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest to establish HT as an efficacious addition to multi-modality treatment of cancer.


Subject(s)
Hyperthermia, Induced , Models, Biological , Computer Simulation , Humans , Neoplasms/therapy
6.
Int J Hyperthermia ; 29(3): 181-93, 2013 May.
Article in English | MEDLINE | ID: mdl-23590361

ABSTRACT

BACKGROUND AND PURPOSE: In Rotterdam, patient-specific hyperthermia (HT) treatment planning (HTP) is applied for all deep head and neck (H&N) HT treatments. In this paper we introduce VEDO (the Visualisation Tool for Electromagnetic Dosimetry and Optimisation), the software tool required, and demonstrate its value for HTP-guided online complaint-adaptive (CA) steering based on specific absorption rate (SAR) optimisation during a H&N HT treatment. MATERIALS AND METHODS: VEDO integrates CA steering, visualisation of the SAR patterns and mean tumour SAR (SAR(target)) optimisation in a single screen. The pre-calculated electromagnetic fields are loaded into VEDO. During treatment, VEDO shows the SAR pattern, overlaid on the patients' CT-scan, corresponding to the actually applied power settings and it can (re-)optimise the SAR pattern to minimise SAR at regions where the patient senses discomfort while maintaining a high SAR(target). RESULTS: The potential of the quantitative SAR steering approach using VEDO is demonstrated by analysis of the first treatment in which VEDO was used for two patients using the HYPERcollar. These cases show that VEDO allows response to power-related complaints of the patient and to quantify the change in absolute SAR: increasing either SAR(target) from 96 to 178 W/kg (case 1); or show that the first SAR distribution was already optimum (case 2). CONCLUSION: This analysis shows that VEDO facilitates a quantitative treatment strategy allowing standardised application of HT by technicians of different HT centres, which will potentially lead to improved treatment quality and the possibility of tracking the effectiveness of different treatment strategies.


Subject(s)
Hyperthermia, Induced/methods , Software , Aged , Female , Head , Humans , Hyperthermia, Induced/instrumentation , Male , Middle Aged , Neck , Thyroid Neoplasms/therapy , Tongue Neoplasms/therapy
7.
Bioelectromagnetics ; 33(8): 695-705, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22674188

ABSTRACT

We investigated whether domestic and professional induction cooktops comply with the basic restrictions defined by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Based on magnetic field measurements, a generic numerical model of an induction cooktop was derived in order to model user exposure. The current density induced in the user was simulated for various models and distances. We also determined the exposure of the fetus and of young children. While most measured cooktops comply with the public exposure limits at the distance specified by the International Electrotechnical Commission (standard IEC 62233), the majority exceeds them at closer distances, some of them even the occupational limits. The maximum current density in the tissue of the user significantly exceeds the basic restrictions for the general public, reaching the occupational level. The exposure of the brains of young children reaches the order of magnitude of the limits for the general public. For a generic worst-case cooktop compliant with the measurement standards, the current density exceeds the 1998 ICNIRP basic restrictions by up to 24 dB or a factor of 16. The brain tissue of young children can be overexposed by 6 dB or a factor of 2. The exposure of the tissue of the central nervous system of the fetus can exceed the limits for the general public if the mother is exposed at occupational levels. This demonstrates that the methodology for testing induction cooktops according to IEC 62233 contradicts the basic restrictions. This evaluation will be extended considering


Subject(s)
Cooking/instrumentation , Cooking/standards , Environmental Exposure/analysis , Environmental Exposure/standards , Heating/instrumentation , Heating/standards , Housing , Adult , Body Burden , Child, Preschool , Electromagnetic Fields/adverse effects , Female , Humans , Male , Models, Biological , Pregnancy , Reference Standards
8.
IEEE Trans Biomed Eng ; 54(11): 2057-63, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18018701

ABSTRACT

In this paper, we describe a specifically designed patch antenna that can be used as the basis antenna element of a clinical phased-array head and neck hyperthermia applicator. Using electromagnetic simulations we optimized the dimensions of a probe-fed patch antenna design for operation at 433 MHz. By several optimization steps we could converge to a theoretical reflection of -38 dB and a bandwidth (-15 dB) of 20 MHz (4.6%). Theoretically, the electrical performance of the antenna was satisfactory over a temperature range of 15 degrees C-35 degrees C, and stable for patient-antenna distances to as low as 4 cm. In an experimental cylindrical setup using six elements of the final patch design, we measured the impedance characteristics of the antenna 1) to establish its performance in the applicator and 2) to validate the simulations. For this experimental setup we simulated and measured comparable values: -21 dB reflection at 433 MHz and a bandwidth of 18.5 MHz. On the basis of this study, we anticipate good central interference of the fields of multiple antennas and conclude that this patch antenna design is very suitable for the clinical antenna array. In future research we will verify the electrical performance in a prototype applicator.


Subject(s)
Diathermy/instrumentation , Electromagnetic Phenomena/instrumentation , Head , Neck , Transducers , Equipment Design , Equipment Failure Analysis
9.
Int J Hyperthermia ; 23(1): 59-67, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17575724

ABSTRACT

PURPOSE: Investigation into the feasibility of a circular array of dipole antennas to deposit RF-energy centrally in the neck as a function of: (1) patient positioning, (2) antenna ring radius, (3) number of antenna rings, (4) number of antennas per ring and (5) distance between antenna rings. MATERIALS AND METHODS: Power absorption (PA) distributions in realistic, head and neck, anatomy models are calculated at 433 MHz. Relative PA distributions corresponding to different set-ups were analysed using the ratio of the average PA (aPA) in the target and neck region. RESULTS: Enlarging the antenna ring radius from 12.5 cm to 25 cm resulted in a approximately 21% decrease in aPA. By changing the orientation of the patients with respect to the array an increase by approximately 11% was obtained. Increase of the amount of antenna rings led to a better focussing of the power (1 --> 2/3: approximately 17%). Increase of the distance between the antenna rings resulted in a smaller (more target region conformal) focus but also a decreased power penetration. CONCLUSIONS: A single optimum array setup suitable for all patients is difficult to define. Based on the results and practical limitations a setup consisting of two rings of six antennas with a radius of 20 cm and 6 cm array spacing is considered a good choice providing the ability to heat the majority of patients.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Head/anatomy & histology , Hyperthermia, Induced , Models, Theoretical , Neck/anatomy & histology , Head/pathology , Head and Neck Neoplasms/pathology , Humans , Hyperthermia, Induced/instrumentation , Hyperthermia, Induced/methods , Neck/pathology
10.
Int J Radiat Oncol Biol Phys ; 68(2): 612-20, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17418965

ABSTRACT

PURPOSE: To experimentally verify the feasibility of focused heating in the neck region by an array of two rings of six electromagnetic antennas. We also measured the dynamic specific absorption rate (SAR) steering possibilities of this setup and compared these SAR patterns to simulations. METHODS AND MATERIALS: Using a specially constructed laboratory prototype head-and-neck applicator, including a neck-mimicking cylindrical muscle phantom, we performed SAR measurements by electric field, Schottky-diode sheet measurements and, using the power-pulse technique, by fiberoptic thermometry and infrared thermography. Using phase steering, we also steered the SAR distribution in radial and axial directions. All measured distributions were compared with the predictions by a finite-difference time-domain-based electromagnetic simulator. RESULTS: A central 50% iso-SAR focus of 35 +/- 3 mm in diameter and about 100 +/- 15 mm in length was obtained for all investigated settings. Furthermore, this SAR focus could be steered toward the desired location in the radial and axial directions with an accuracy of approximately 5 mm. The SAR distributions as measured by all three experimental methods were well predicted by the simulations. CONCLUSION: The results of our study have shown that focused heating in the neck is feasible and that this focus can be effectively steered in the radial and axial directions. For quality assurance measurements, we believe that the Schottky-diode sheet provides the best compromise among effort, speed, and accuracy, although a more specific and improved design is warranted.


Subject(s)
Electromagnetic Phenomena/instrumentation , Head and Neck Neoplasms/therapy , Hyperthermia, Induced/instrumentation , Algorithms , Equipment Design , Feasibility Studies , Phantoms, Imaging , Thermography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...