Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7123, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37130945

ABSTRACT

This study aimed to investigate the physiological responses of Euglena gracilis (E. gracilis) when subjected to semicontinuous N-starvation (N-) for an extended period in open ponds. The results indicated that the growth rates of E. gracilis under the N- condition (11 ± 3.3 g m-2 d-1) were higher by 23% compared to the N-sufficient (N+, 8.9 ± 2.8 g m-2 d-1) condition. Furthermore, the paramylon content of E.gracilis was above 40% (w/w) of dry biomass in N- condition compared to N+ (7%) condition. Interestingly, E. gracilis exhibited similar cell numbers regardless of nitrogen concentrations after a certain time point. Additionally, it demonstrated relatively smaller cell size over time, and unaffected photosynthetic apparatus under N- condition. These findings suggest that there is a tradeoff between cell growth and photosynthesis in E. gracilis, as it adapts to semi-continuous N- conditions without a decrease in its growth rate and paramylon productivity. Notably, to the author's knowledge, this is the only study reporting high biomass and product accumulation by a wild-type E. gracilis strain under N- conditions. This newly identified long-term adaptation ability of E. gracilis may offer a promising direction for the algal industry to achieve high productivity without relying on genetically modified organisms.


Subject(s)
Euglena gracilis , Photosynthesis , Biomass
2.
Molecules ; 27(3)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35164374

ABSTRACT

The present research investigates the tuber proteome of the 'medicinal' plant Jerusalem artichoke (abbreviated as JA) (Helianthus tuberosus L.) using a high-throughput proteomics technique. Although JA has been historically known to the Native Americans, it was introduced to Europe in the late 19th century and later spread to Japan (referred to as 'kiku-imo') as a folk remedy for diabetes. Genboku Takahashi research group has been working on the cultivation and utilization of kiku-imo tuber as a traditional/alternative medicine in daily life and researched on the lowering of blood sugar level, HbA1c, etc., in human subjects (unpublished data). Understanding the protein components of the tuber may shed light on its healing properties, especially related to diabetes. Using three commercially processed JA tuber products (dried powder and dried chips) we performed total protein extraction on the powdered samples using a label-free quantitate proteomic approach (mass spectrometry) and catalogued for the first time a comprehensive protein list for the JA tuber. A total of 2967 protein groups were identified, statistically analyzed, and further categorized into different protein classes using bioinformatics techniques. We discussed the association of these proteins to health and disease regulatory metabolism. Data are available via ProteomeXchange with identifier PXD030744.


Subject(s)
Helianthus/metabolism , Plant Tubers/metabolism , Proteome/analysis , Proteome/metabolism , Proteomics/methods
3.
Antibodies (Basel) ; 10(1)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440681

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel coronavirus for which no known effective antiviral drugs are available. In the present study, to accelerate the discovery of potential drug candidates, bioinformatics-based in silico drug discovery approaches are utilized. We performed multiple sequence alignments of the Spike (S) protein with 75 sequences of different viruses from the Orthocoronavirinae subfamily. This provided us with insights into the evolutionarily conserved domains that can be targeted using drugs or specific antibodies. Further, we analyzed the mechanism of SARS-CoV-2 core proteins, i.e., S and RdRp (RNA-dependent RNA polymerase), to elucidate how the virus infection can utilize hemoglobin to decrease the blood oxygen level. Moreover, after a comprehensive literature survey, more than 60 antiviral drugs were chosen. The candidate drugs were then ranked based on their potential to interact with the Spike and RdRp proteins of SARS-CoV-2. The present multidimensional study further advances our understanding of the novel viral molecular targets and potential of computational approaches for therapeutic assessments. The present study can be a steppingstone in the selection of potential drug candidates to be used either as a treatment or as a reference point when designing a new drug/antibody/inhibitory peptide/vaccine against SARS-CoV-2.

4.
Proteomics ; 15(23-24): 4145-58, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25914246

ABSTRACT

Lipid body (LB) is recognized as the cellular carbon and energy storage organelle in many organisms. LBs have been observed in the marine haptophyte alga Tisochrysis lutea that produces special lipids such as long-chain (C37 -C40) ketones (alkenones) with 2-4 trans-type double bonds. In this study, we succeeded in developing a modified method to isolate LB from T. lutea. Purity of isolated LBs was confirmed by the absence of chlorophyll auto-fluorescence and no contamination of the most abundant cellular protein ribulose-1,5-bisphosphate carboxylase/oxygenase. As alkenones predominated in the LB by GC-MS analysis, the LB can be more appropriately named as "alkenone body (AB)." Extracted AB-containing proteins were analyzed by the combination of 1DE (SDS-PAGE) and MS/MS for confident protein identification and annotated using BLAST tools at National Center for Biotechnology Information. Totally 514 proteins were identified at the maximum. The homology search identified three major proteins, V-ATPase, a hypothetical protein EMIHUDRAFT_465517 found in other alkenone-producing haptophytes, and a lipid raft-associated SPFH domain-containing protein. Our data suggest that AB of T. lutera is surrounded by a lipid membrane originating from either the ER or the ER-derived four layer-envelopes chloroplast and function as the storage site of alkenones and alkenes.


Subject(s)
Haptophyta/metabolism , Ketones/metabolism , Proteomics , Haptophyta/genetics
5.
PLoS One ; 7(11): e49425, 2012.
Article in English | MEDLINE | ID: mdl-23185330

ABSTRACT

CyanoPhyChe is a user friendly database that one can browse through for physico-chemical properties, structure and biochemical pathway information of cyanobacterial proteins. We downloaded all the protein sequences from the cyanobacterial genome database for calculating the physico-chemical properties, such as molecular weight, net charge of protein, isoelectric point, molar extinction coefficient, canonical variable for solubility, grand average hydropathy, aliphatic index, and number of charged residues. Based on the physico-chemical properties, we provide the polarity, structural stability and probability of a protein entering in to an inclusion body (PEPIB). We used the data generated on physico-chemical properties, structure and biochemical pathway information of all cyanobacterial proteins to construct CyanoPhyChe. The data can be used for optimizing methods of expression and characterization of cyanobacterial proteins. Moreover, the 'Search' and data export options provided will be useful for proteome analysis. Secondary structure was predicted for all the cyanobacterial proteins using PSIPRED tool and the data generated is made accessible to researchers working on cyanobacteria. In addition, external links are provided to biological databases such as PDB and KEGG for molecular structure and biochemical pathway information, respectively. External links are also provided to different cyanobacterial databases. CyanoPhyChe can be accessed from the following URL: http://bif.uohyd.ac.in/cpc.


Subject(s)
Chemistry, Physical/methods , Cyanobacteria/metabolism , Algorithms , Amino Acids/chemistry , DNA/chemistry , Databases, Protein , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Genome, Bacterial , Hydrogen-Ion Concentration , Inclusion Bodies/metabolism , Internet , Molecular Weight , Plasmids/metabolism , Protein Structure, Secondary , Sequence Analysis, Protein/methods , Synechocystis/metabolism , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...