Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 36(32): 9377-9387, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32709205

ABSTRACT

Characterization of mechanical properties of thin porous films with nanoscale resolution remains a challenge for instrumentation science. In this work, atomic force microscopy (AFM) in the PeakForce quantitative nanomechanical mapping (PFQNM) mode is used for Young's modulus measurements of porous organosilicate glass films. The test samples were prepared by sol-gel techniques using silicon alkoxide and methyl-modified silicon alkoxide to prepare films with different CH3/Si ratios. The film porosity was engineered by using a Brij 30 template and the evaporation-induced self-assembly technique. The chemical composition, pore structure, and modification during air storage and thermal annealing were studied using FTIR spectroscopy and ellipsometric porosimetry (EP). Since PFQNM AFM was first used for evaluation of Young's modulus of thin porous films, the obtained results are benchmarked using nanoindentation (NI), surface acoustic wave (SAW) spectroscopy, and EP. The results have good agreement with each other, but PFQNM and NI give slightly larger values than SAW and EP. The difference is in agreement with previously reported data and reflects the different physical meaning of the obtained values. It is shown that the presence of physically adsorbed water strongly influences the results generated by PFQNM AFM, and therefore, reliable water removal from the studied materials is necessary.

2.
Nat Commun ; 4: 1437, 2013.
Article in English | MEDLINE | ID: mdl-23385582

ABSTRACT

A superconductor in a magnetic field acquires a finite electrical resistance caused by vortex motion. A quest to immobilize vortices and recover zero resistance at high fields made intense studies of vortex pinning one of the mainstreams of superconducting research. Yet, the decades of efforts resulted in a realization that even promising nanostructures, utilizing vortex matching, cannot withstand high vortex density at large magnetic fields. Here, we report a giant reentrance of vortex pinning induced by increasing magnetic field in a W-based nanowire and a TiN-perforated film densely populated with vortices. We find an extended range of zero resistance with vortex motion arrested by self-induced collective traps. The latter emerge due to order parameter suppression by vortices confined in narrow constrictions by surface superconductivity. Our findings show that geometric restrictions can radically change magnetic properties of superconductors and reverse detrimental effects of magnetic field.

3.
Phys Rev Lett ; 101(15): 157006, 2008 Oct 10.
Article in English | MEDLINE | ID: mdl-18999631

ABSTRACT

Scanning tunneling spectroscopy at very low temperatures on homogeneously disordered superconducting titanium nitride thin films reveals strong spatial inhomogeneities of the superconducting gap Delta in the density of states. Upon increasing disorder, we observe suppression of the superconducting critical temperature Tc towards zero, enhancement of spatial fluctuations in Delta, and growth of the Delta/Tc ratio. These findings suggest that local superconductivity survives across the disorder-driven superconductor-insulator transition.

4.
Phys Rev Lett ; 98(12): 127003, 2007 Mar 23.
Article in English | MEDLINE | ID: mdl-17501151

ABSTRACT

We investigate ultrathin superconducting TiN films, which are very close to the localization threshold. Perpendicular magnetic field drives the films from the superconducting to an insulating state, with very high resistance. Further increase of the magnetic field leads to an exponential decay of the resistance towards a finite value. In the limit of low temperatures, the saturation value can be very accurately extrapolated to the universal quantum resistance h/e2. Our analysis suggests that at high magnetic fields a new ground state, distinct from the normal metallic state occurring above the superconducting transition temperature, is formed. A comparison with other studies on different materials indicates that the quantum metallic phase following the magnetic-field-induced insulating phase is a generic property of systems close to the disorder-driven superconductor-insulator transition.

5.
Phys Rev Lett ; 99(25): 257003, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-18233550

ABSTRACT

We investigate low-temperature transport properties of thin TiN superconducting films in the vicinity of the disorder-driven superconductor-insulator transition. In a zero magnetic field, we find an extremely sharp separation between superconducting and insulating phases, evidencing a direct superconductor-insulator transition without an intermediate metallic phase. At moderate temperatures, in the insulating films we reveal thermally activated conductivity with the magnetic field-dependent activation energy. At very low temperatures, we observe a zero-conductivity state, which is destroyed at some depinning threshold voltage V{T}. These findings indicate the formation of a distinct collective state of the localized Cooper pairs in the critical region at both sides of the transition.

6.
Anal Bioanal Chem ; 374(4): 654-7, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12397487

ABSTRACT

Variable angle spectroscopic ellipsometry (VASE) and ellipsometric porosimetry (EP) have been used to study the effect of treatment with hexamethyldisilazane (HMDS) on the porosity of silica xerogel films. Chemical modification of the surface with HMDS was found to reduce the porosity by approximately 15%. This reduction was connected with changes which occur in the silica network, with further condensation or the reaction between neighbouring trimethylsilyl (TMS) surface groups being possible causes.

SELECTION OF CITATIONS
SEARCH DETAIL
...