Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973497

ABSTRACT

The quasi-frictionless water flow across graphitic surfaces offers vast opportunities for a wide range of applications from biomedical science to energy. However, the conflicting experimental results impede a clear understanding of the transport mechanism and desired flow control. Existing literature proposes numerous modifications and updated boundary conditions to extend classical hydrodynamic theories for nanoflows, yet a consensus or definitive conclusion remains elusive. This study presents a critical review of the proposed modifications of the pressure driven flow or the Hagen-Poiseuille (HP) equations to estimate the flow enhancement through carbon nanotubes (CNTs). For such a case, we performed (semi-)classical molecular dynamics simulations of water flow in various sizes of CNTs, applied the different forms of boundary definitions from the literature, and derived HP equation models by implementing these modifications. By aggregating seven distinct experimental datasets, we tested various flow enhancement models against our measurements. Our findings indicate that including the interfacial layering-based dynamic slip-definition in the proposed HP equations yields accurate estimations. While considering interfacial viscosity predicts the individual CNT experiments well, using the experimental viscosity yields better estimations of measurements for the water flow enhancement through membranes of CNTs. This critical review testing existing literature demonstrates how to refine continuum fluid mechanics to predict water flow enhancement at the nanoscale providing holistic multiscale modeling.

2.
Nanoscale ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853508

ABSTRACT

Oil spillage and organic solvent leakage have been a frequent occurrence in recent years, which pose a significant threat not only to the aquatic ecosystems but also result in substantial economic burdens. This has necessitated the search for materials capable of separating oil from water at enhanced efficiency with superior mechanical and thermal properties. In this study, we conduct a set of systematic molecular dynamics simulations to investigate the potential of two-dimensional graphene-like channels under extreme confinement to achieve efficient oil-water separation. Effective modulation of the wetting characteristics of graphene-like surfaces juxtaposed with unconventional flow behavior at the nanoscale unveils differential interaction of water and oil molecules towards the wall, thereby resulting in distinct separation zones for varying compositions of the oil-water mixture. Such separation zones have been observed to be highly correlated with mixture temperature, which provides effective separation pathways across diverse environmental conditions. Our study offers a paradigm shift in oil-water separation strategies, which not only provides deeper insights into the equilibrium and dynamic behavior of a two-phase mixture but also holds immense implications for the development of smart, wettability-based oil separation devices.

3.
Small ; : e2400975, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618920

ABSTRACT

As electronic devices for aviation, space, and satellite applications become more sophisticated, built-in energy storage devices also require a wider temperature spectrum. Herein, an all-climate operational, energy and power-dense, flexible, in-plane symmetric pseudocapacitor is demonstrated with utmost operational safety and long cycle life. The device is constructed with interdigital-patterned laser-scribed carbon-supported electrodeposited V5O12·6H2O as a binder-free electrode and a novel high-voltage anti-freezing water-in-salt-hybrid electrolyte. The anti-freezing electrolyte can operate over a wide temperature range of -40-60 °C while offering a stable potential window of ≈2.5 V. The device undergoes rigorous testing under diverse environmental conditions, including rapid and regular temperature and mechanical transition over multiple cycles. Additionally, detailed theoretical simulation studies are performed to understand the interfacial interactions with the active material as well as the local behavior of the anti-freeze electrolyte at different temperatures. As a result, the all-weather pseudocapacitor at 1 A g-1 shows a high areal capacitance of 234.7 mF cm-2 at room temperature and maintains a high capacitance of 129.8 mF cm-2 even at -40 °C. Besides, the cell operates very reliably for over 80 950 cycles with a capacitance of 25.7 mF cm-2 at 10 A g-1 and exhibits excellent flexibility and bendability under different stress conditions.

4.
Langmuir ; 40(14): 7300-7309, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38536237

ABSTRACT

DNA sequencing and sensing using nanopore technology delves critically into the alterations in the measurable electrical signal as single-stranded DNA is drawn through a tiny passage. To make such precise measurements, however, slowing down the DNA in the tightly confined passage is a key requirement, which may be achieved by grafting the nanopore walls with a polyelectrolyte layer (PEL). This soft functional layer at the wall, under an off-design condition, however, may block the DNA passage completely, leading to the complete loss of output signal from the nanobio sensor. Whereas theoretical postulates have previously been put forward to explain the essential physics of DNA translocation in nanopores, these have turned out to be somewhat inadequate when confronted with the experimental findings on functionalized nanopores, including the prediction of the events of complete signal losses. Circumventing these constraints, herein we bring out a possible decisive role of the interplay between the inevitable variabilities in the ionic distribution along the nanopore axis due to its finite length as opposed to its idealized "infinite" limit as well as the differential permittivity of PEL and bulk solution that cannot be captured by the commonly used one-dimensional variant of the electrical double layer theory. Our analysis, for the first time, captures variations in the ionic concentration distribution across multidimensional physical space and delineates its impact on the DNA translocation characteristics that have hitherto remained unaddressed. Our results reveal possible complete blockages of DNA translocation as influenced by less-than-threshold permittivity values or greater-than-threshold grafting densities of the PEL. In addition, electrohydrodynamic blocking is witnessed due to the ion-selective nature of the nanopore at low ionic concentrations. Hence, our study establishes a functionally active regime over which the PEL layer in a finite-length nanopore facilitates controllable DNA translocation, enabling successful sequencing and sensing through the explicit modulation of translocation speed.


Subject(s)
Nanopores , Polyelectrolytes , DNA , DNA, Single-Stranded , Ions
5.
J Chem Phys ; 160(6)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38341795

ABSTRACT

Extreme confinement in nanochannels results in unconventional equilibrium and flow behavior of polymers. The underlying flow physics dictating such paradigms remains far from being understood and more so if the confining substrate is composed of two-dimensional materials, such as graphene. In this study, we conducted systematic molecular dynamics simulations to explore the effect of wettability, confinement, and chain length on polymer flow through graphene-like nanochannels. Altering the wetting properties of these membranes that structurally represent graphene results in substantial changes in the behavior of polymers of disparate chain lengths. Longer hydrocarbon chains (n-dodecane) exhibit negligible wettability-dependent structuring in narrower nanochannels compared to shorter chains (n-hexane) culminating in higher average velocities and interfacial slippage of n-dodecane under less wettable conditions. We demonstrate that the wettability compensation comes from chain entanglement attributed to entropic factors. This study reveals a delicate balance between wettability-dependent enthalpy and chain-length-dependent entropy, resulting in a unique nanoscale flow paradigm, thus not only having far-reaching implications in the superior discernment of polymeric flow in sub-micrometer regimes but also potentially revolutionizing various applications in the oil industry, including innovative oil transport, oil extraction, ion transport polymers, and separation membranes.

6.
Langmuir ; 39(36): 12826-12834, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37642554

ABSTRACT

A liquid drop impacting on a soft surface is known to exhibit fascinating dynamics that is distinctive from its bounce-back atop a rigid surface. However, while the early spreading of the drop subsequent to its immediate impact with a lubricating liquid layer appears to be reasonably well understood, the later events of retraction and eventual stabilization appear to be poorly addressed. Here, we bring out the nontrivial confluence of the solid substrate wettability and the liquid layer viscosity toward modulating the post-collision dynamics of an impinging liquid drop on a viscous oil-infused surface during its later phase of settlement before arriving at an equilibrium state. Our results reveal that despite an intuitive analogy with the classical phenomenon of damped oscillation, the drop, during its later stages of motion, undergoes dynamical events that may be nontrivially dictated by not only the relative viscosity of the impacting drop and the liquid layer but also the intrinsic wettability of the solid substrate, governing its post-impact settlement via a sequel of spreading-retraction cycles. As a consequence, the viscous liquid layer, instead of providing additional damping, may nonintuitively reduce the effective viscous dissipation so as to hasten the drop's final settlement. These results may turn out to be critical in designing engineered surfaces for tuning the movement of drops in a preferential pathway, bearing decisive implications in the functionalities of liquid lenses, inkjet printing, spray coating and cooling, and several other emerging applications in the realm of lubricated fluidic interfaces.

7.
J Chem Phys ; 158(21)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37260011

ABSTRACT

Fluid flow in miniature devices is often characterized by a boundary "slip" at the wall, as opposed to the classical paradigm of a "no-slip" boundary condition. While the traditional mathematical description of fluid flow as expressed by the differential forms of mass and momentum conservation equations may still suffice in explaining the resulting flow physics, one inevitable challenge against a correct quantitative depiction of the flow velocities from such considerations remains in ascertaining the correct slip velocity at the wall in accordance with the complex and convoluted interplay of exclusive interfacial phenomena over molecular scales. Here, we report an analytic engine that applies combined physics-based and data-driven modeling to arrive at a quantitative depiction of the interfacial slip via a molecular-dynamics-trained machine learning algorithm premised on fluid structuration at the wall. The resulting mapping of the system parameters to a single signature data that bridges the molecular and continuum descriptions is envisaged to be a preferred computationally inexpensive route as opposed to expensive multi-scale or molecular simulations that may otherwise be inadequate to resolve the flow features over experimentally tractable physical scales.

8.
Nanoscale ; 14(44): 16661-16672, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36330851

ABSTRACT

Optimizing ion transport through nanoporous graphene membranes with intricate engineering at nanoscale levels finds applications ranging from ion segregation to desalination. Such membrane-level engineering often requires futuristic and state-of-the-art micro- and nanofabrication infrastructure making it less accessible to widespread applications. In this study, the effective membrane pore size is modulated using macroscopic membrane functionalization, which, when combined with the solute concentration, can prove to be facile nanoscale engineering towards achieving selectivity. By performing robust molecular dynamics (MD) simulations of aqueous NaCl solution through a nanoporous graphene membrane, we demonstrate that varying membrane wettability influences the structural organization of ions and water molecules both in the vicinity and inside the nanopore, which is manifested in the form of altered permeation characteristics. Moreover, the disparate solvation characteristics of the ionic species in conjunction with the variable van der Waals interactive forces affect the ion-selective nature (Cl- over Na+) of the membrane. The relative hydrophilization, resulting from the effective functionalization of the nanoporous graphene membrane, not only allows greater control over the permeation characteristics of ions and water molecules mediated by an altered depletion ratio but also gives rise to the ion-selective nature of the membrane, thus providing a sound understanding of the transport properties of ion-water solutions through nanoporous materials.

9.
Adv Mater ; 34(11): e2108940, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34984739

ABSTRACT

Atomically thin membranes comprising nanopores in a 2D material promise to surpass the performance of polymeric membranes in several critical applications, including water purification, chemical and gas separations, and energy harvesting. However, fabrication of membranes with precise pore size distributions that provide exceptionally high selectivity and permeance in a scalable framework remains an outstanding challenge. Circumventing these constraints, here, a platform technology is developed that harnesses the ability of oppositely charged polyelectrolytes to self-assemble preferentially across larger, relatively leaky atomically thin nanopores by exploiting the lower steric hindrance of such larger pores to molecular interactions across the pores. By selectively tightening the pore size distribution in this manner, self-assembly of oppositely charged polyelectrolytes simultaneously introduced on opposite sides of nanoporous graphene membranes is demonstrated to discriminate between nanopores to seal non-selective transport channels, while minimally compromising smaller, water-selective pores, thereby remarkably attenuating solute leakage. This improved membrane selectivity enables desalination across centimeter-scale nanoporous graphene with 99.7% and >90% rejection of MgSO4 and NaCl, respectively, under forward osmosis. These findings provide a versatile strategy to augment the performance of nanoporous atomically thin membranes and present intriguing possibilities of controlling reactions across 2D materials via exclusive exploitation of pore size-dependent intermolecular interactions.

10.
J Chem Phys ; 154(16): 164709, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33940837

ABSTRACT

Continuum computations of fluid flow in conduits approaching molecular scales are often executed with a certain level of abstractions via the imposition of a pre-defined slip condition at the wall. However, in reality, the interfacial slip may not be affixed a priori as a direct one-to-one mapping with the surface wettability and charge but is implicitly interconnected with the concomitant dynamical events that may be effectively captured only under flow conditions. The flow in nanofluidic channels with axially varying cross sections hallmarks such situations in which the effective slip at the wall gets dynamically modulated by upstream flow conditions and cannot be trivially stamped as guided by localized intermolecular interactions over interfacial scales alone. In an effort to capture such flows without resorting to full-domain molecular dynamics simulations, here we bring out advancements on hybrid molecular-continuum simulations and report predictions that closely capture molecular dynamics based predictions of water transport through converging nanopores. Our results turn out to be of significant implications toward designing of emerging nanoscale devices of multifarious applications ranging from miniaturized reactors to highly targeted drug delivery systems.

11.
Sci Rep ; 11(1): 1182, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33441877

ABSTRACT

Self-assembly of Janus particles with spatial inhomogeneous properties is of fundamental importance in diverse areas of sciences and has been extensively observed as a favorably functionalized fluidic interface or in a dilute solution. Interestingly, the unique and non-trivial role of surface wettability on oriented self-assembly of Janus particles has remained largely unexplored. Here, the exclusive role of substrate wettability in directing the orientation of amphiphilic metal-polymer Bifacial spherical Janus particles, obtained by topo-selective metal deposition on colloidal Polymestyere (PS) particles, is explored by drop casting a dilute dispersion of the Janus colloids. While all particles orient with their polymeric (hydrophobic) and metallic (hydrophilic) sides facing upwards on hydrophilic and hydrophobic substrates respectively, they exhibit random orientation on a neutral substrate. The substrate wettability guided orientation of the Janus particles is captured using molecular dynamic simulation, which highlights that the arrangement of water molecules and their local densities near the substrate guide the specific orientation. Finally, it is shown that by spin coating it becomes possible to create a hexagonal close-packed array of the Janus colloids with specific orientation on differential wettability substrates. The results reported here open up new possibilities of substrate-wettability driven functional coatings of Janus particles, which has hitherto remained unexplored.

12.
Nanoscale Adv ; 2(8): 3507-3513, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-36134284

ABSTRACT

Nanofluids play a very important role in thermal management and heat exchange processes and for a stable nanofluid, a surfactant is a salient material. There are many contrasting reports on the thermal conductivity of nanofluids and the associated heat transport mechanism in nanofluids. In this article, four different types of nanoparticles are synthesized using citric acid and oleic acid as surfactants, followed by the assessment of their thermal conductivities. For a nanofluid of 3 wt% nanoparticles, coated with citric acid in water 67% reduction in thermal conductivity is observed, and on the other hand a 4% enhancement in thermal conductivity is observed for oleic acid-coated nanoparticles in toluene. This anomaly in the thermal transport behaviour of the nanofluid can be related to the surface properties of nanoparticles and the polarity of the base fluid. Theoretical calculation based on molecular dynamics simulations shows that the reduction in long-range interaction and fluid structuration reduce the thermal conductivity in a polar fluid with a polar surfactant coated nanoparticle.

13.
Nanoscale ; 11(23): 11254-11261, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31162505

ABSTRACT

Slip of liquid over nanometer scales is traditionally believed to be augmented with interfacial shear. In sharp contrast to this intuitive paradigm, here we show that a reverse of this phenomenon may also be possible, by exploiting a rich and non-trivial interplay between interfacial wettability and shear distribution in nano-confined water. This may be attributed to the complex overlapping effect of the local hydrodynamic fields imposed by the opposing boundaries, in the case of highly confined water molecules. The net effect culminates in the form of intriguing molecular layering that can by no means be intuitively estimated, as unveiled from the present molecular dynamics simulations. The consequent complex nature of the interfacial friction is observed to depend not only on the chemical and physical signature of the interface but also on the distribution of the shear rate. We also provide a simple continuum-based theory, in an effort to capture the essential aspects of the underlying physico-chemical interactions. These results are likely to open up new windows for control of slippery and sticky flows in nanofluidic channels.

14.
Nanoscale ; 9(34): 12509-12515, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28819670

ABSTRACT

A sessile droplet or a film usually moves from hotter regions to colder regions, due to variations in interfacial tension. This, known as the so-called Marangoni effect, is true for most pure liquids like water for which the surface tension decreases with an increase in temperature. In stark contrast to this existing understanding, we bring forth the coupled effect of wettability and temperature gradients on the dynamics of the three-phase contact line. By simultaneously tracking the dynamic evolution of the three-phase contact line due to the evaporation and diffusion of molecules through molecular dynamics simulations, we explore the coterminous effects of the change of surface tension coefficients and wetting parameters with temperature on sessile droplets residing on surfaces with different wettabilities. We demonstrate, for the very first time, that the inverse Marangoni effect, which is believed to be exclusively observed in mixtures and self-rewetting fluids, is feasible in pure water at scales where inertial effects are negligible. The results of the study find application in electronic chip cooling where by the combined tuning of surface characteristics and Marangoni forces, droplets can be passively transported to warmer regions for efficient thermal management.

15.
Nanoscale ; 8(12): 6535-41, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26935707

ABSTRACT

Giant frictional resistances are grand challenges against the rapid filling of nanoscale capillaries, as encountered in a wide variety of applications ranging from nature to energy. It is commonly believed that partially wettable charged nanocapillaries fill up considerably slower, compared to completely wettable ones, under the influence of a complex interplay between interfacial tension and electrical interactions. In sharp contrast to this common belief, here we discover a new non-intuitive regime of rapid filling of charged capillaries over the nanometer scale, by virtue of which a partially wettable capillary may fill up comparatively faster than a completely wettable one. We attribute the fundamental origin of this remarkable behavior to ion-water interactions over interfacial scales. The underlying novel electro-hydrodynamic mechanism, as unveiled here, may provide deeper insights into the physico-chemical interactions leading to augmentations in the rates of nanocapillary filling over hydrophobic regimes, bearing far-reaching implications in the transport of biological fluids, enhanced oil recovery, and miniaturized energy harvesting applications.

16.
Nano Lett ; 15(11): 7497-502, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26468881

ABSTRACT

Contrary to common intuition that hydrophobic surfaces trivially cause water to slip, we discover a slippery-to-sticky transition in tunable hydrophobic nanochannels. We demonstrate this remarkable phenomenon by bringing out hitherto unveiled interplay between ion inclusions in the water and the interfacial lattice configuration over molecular scales. The consequent alterations in frictional characteristics illustrate that so-called hydrophobic nanochannels can be switchable to manifest features that are otherwise typically associated with hydrophilicity, causing water to stick. Our proposition may bear immense consequences toward fluidically functionalizing a hydrophobic interface without necessitating elaborate surface treatment techniques, bringing in far-ranging implications in diverse applications ranging from nature to energy.

17.
Electrophoresis ; 36(5): 675-81, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25258090

ABSTRACT

We bring out a nontrivial coupling of the intrinsic wettability, surface charge, and electrokinetic energy conversion characteristics of nanofluidic devices. Our analyses demonstrate that nanofluidic energy conversion efficiencies may get amplified with increase in surface charge density, not perpetually, but only over a narrow regime of low surface charges, and may get significantly arrested to reach a plateau beyond a threshold surface charging condition, as attributed to a complex interplay between fluid structuration and ionic transport within a charged interfacial layer. We explain the corresponding findings from our molecular dynamics simulations with the aid of a simple modified continuum based theory. We attribute our findings to hitherto-unexplored four-way integration of surface charge, interfacial slip, ionic transport, and the water molecule structuration. The consequent complex nonlinear nature of the energy transfer characteristics may bear far-ranging scientific and technological implications toward design, synthesis, and operation of futuristic energy conversion devices of molecular length scales.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Nanotechnology/instrumentation , Molecular Dynamics Simulation , Sodium Chloride/chemistry , Wettability
18.
Soft Matter ; 11(1): 161-8, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25375220

ABSTRACT

We investigated the filling dynamics in closed-end capillaries of sub-micron length scale, in which the displacing phase advances at the expense of the entrapped phase. Contrary to common intuition, we reveal that the existence of a displaced phase in a closed-end nano-scale system does not necessarily retard the meniscus advancement over all temporal regimes, unlike what is observed in cases of macro-scale capillaries, but can also sometimes augment the local filling rates. We determined that the combined effect of surface wettability and the displaced phase molecules resulted from the pinning-depinning of the meniscus, and hence, from the local dynamics of capillary filling. We also employed a simple force balance-based model to capture the essential interfacial phenomena governing this behavior, and benchmarked the same with our molecular dynamics simulations. Our results suggest a possible mechanism for modifying the effective wettabilities of nano-scale capillaries without any modification of the surface architecture or chemical treatment of the surface.

19.
Phys Rev Lett ; 110(18): 184503, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683203

ABSTRACT

We discover a nonlinear coupling between the hydrophobicity of a charged substrate and electrokinetic pumping in narrow fluidic confinements. Our analyses demonstrate that the effective electrokinetic transport in nanochannels may get massively amplified over a regime of bare surface potentials and may subsequently get attenuated beyond a threshold surface charging condition because of a complex interplay between reduced hydrodynamic resistance on account of the spontaneous inception of a less dense interfacial phase and ionic transport within the electrical double layer. We also show that the essential physics delineated by our mesoscopic model, when expressed in terms of a simple mathematical formula, agrees remarkably with that portrayed by molecular dynamics simulations. The nontrivial characteristics of the initial increment followed by a decrement of the effective zeta potential with a bare surface potential may open up the realm of hitherto-unexplored operating regimes of electrohydrodynamically actuated nanofluidic devices.

20.
J Chem Phys ; 138(5): 054504, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23406130

ABSTRACT

Energy conversion and generation mechanisms at nano-scales often include tapping power from pressure-driven flow of water containing dissolved salts in nanofluidic channels. The deviation of such flows from continuum behaviour can often be advantageously utilized to enhance the energy conversion efficiency. Here, by executing molecular dynamics simulations, we pinpoint alterations in effective stick-slip at the solid-liquid interface as a function of variation in the nature of the salt as well as salt solution concentration for different substrate wettabilities, which could possibly act as a control towards modulating energy conversion efficiencies of nanofluidic devices. Our results reveal that the presence of salt has distinctive effects in wettable and non-wettable channels. Finally, we address the observed slip length deviation quantitatively based on hydration energy of the individual ionic species.


Subject(s)
Molecular Dynamics Simulation , Nanoparticles/chemistry , Sodium Chloride/chemistry , Water/chemistry , Microfluidic Analytical Techniques , Models, Molecular , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...