Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Membranes (Basel) ; 13(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37999351

ABSTRACT

Composite flat membranes were prepared using a dry uniaxial pressing process. The effect of the sintering temperature (850-950 °C) and smectite proportion (10-50 wt.%) on membrane properties, such as microstructure, mechanical strength, water permeability, and treatment performances, was explored. It was observed that increasing the sintering temperature and adding higher amounts of smectite increased the mechanical strength and shrinkage. Therefore, 850 °C was chosen as the optimum sintering temperature because the composite membranes had a very low shrinkage that did not exceed 5% with high mechanical strength, above 23 MPa. The study of smectite addition (10-50 wt.%) showed that the pore size and water permeability were significantly reduced from 0.98 to 0.75 µm and from 623 to 371 L·h-1·m-2·bar-1, respectively. Furthermore, the application of the used membranes in the treatment of indigo blue (IB) solutions exhibited an almost total turbidity removal. While the removal of color and COD decreased from 95% to 76%, respectively, they decreased from 95% to 52% when the amount of smectite increased. To verify the treated water's low toxicity, a germination test was performed. It has been shown that the total germination of linseed grains irrigated by MS10-Z90 membrane permeate was identical to that irrigated with distilled water. Finally, based on its promising properties, its excellent separation efficiency, and its low energy consumption, the MS10-Z90 (10 wt.% smectite and 90 wt.% zeolite) sintered at 850 °C could be recommended for the treatment of colored industrial wastewater.

2.
Dose Response ; 21(4): 15593258231216274, 2023.
Article in English | MEDLINE | ID: mdl-38022901

ABSTRACT

The synthesis of new water-soluble N-alkylated derivatives of 1,3,5-triaza-7-phosphaadamantane is presented. Ru(PPh3)2Cl2 has been used to react with 1-(4-nitrobenzyl)-3,5-triaza-1-azonia-7-phosphaadamantane bromide (PTAR). By using elemental analysis, NMR, and IR spectroscopy, the obtained compounds were identified. The UV-visible absorption spectroscopy has been used to monitor the complexation of various transition metal cations. Studies on conductivity have been utilized to validate the complexes' stoichiometries. Using the disc diffusion method, five bacteria strains were used for the study of the antimicrobial activity of compounds 1-3. All tested pathogens, including M luteus LB 141107, were found to have strong biologic activity against the compounds tested in this study. Additionally, DPPH (2,2-diphenyl-1-picrylhydrazyl) has been tested for its ability to scavenge hydrogen peroxide and free radicals. According to our results, these compounds exhibit excellent radical scavenging properties.

3.
Dalton Trans ; 52(23): 7772-7786, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37259827

ABSTRACT

Zwitterions may take many forms and have found many applications, some of which are based on their capacity to act as ligands for a wide variety of metal ions. This brief review describes recent developments in this coordination chemistry involving oligozwitterion species, as reflected in solid state X-ray structural studies of the coordination polymers and frameworks formed and with a particular focus on uranyl ion systems.

4.
Membranes (Basel) ; 13(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36837706

ABSTRACT

In this study, calcium and magnesium were removed from Tunisian dam, lake, and tap water using Donnan Dialysis (DD) according to the Doehlert design. Three cation-exchange membranes (CMV, CMX, and CMS) were used in a preliminary investigation to establish the upper and lower bounds of each parameter and to more precisely pinpoint the optimal value. The concentration of compensating sodium ions [Na+] in the receiver compartment, the concentration of calcium [Ca2+] and magnesium [Mg2+] in the feed compartment, and the membrane nature were the experimental parameters. The findings indicate that the CMV membrane offers the highest elimination rate of calcium and magnesium. The Full Factorial Design makes it possible to determine how the experimental factors affect the removal of calcium and magnesium by DD. All parameters used had a favorable impact on the response; however, the calcium and magnesium concentration were the most significant ones. The Doehlert design's Response Surface Methodology (RSM) was used to determine the optimum conditions ([Mg2+] = 90 mg·L-1, [Ca2+] = 88 mg·L-1, [Na+] = 0.68 mol·L-1) allowing a 90.6% hardness removal rate with the CMV membrane. Finally, we used Donnan Dialysis to remove calcium and magnesium from the three different types of natural water: Dam, Lake, and Tap water. The results indicate that, when compared to lake water and tap water, the removal of calcium and magnesium from dam water is the best. This can be linked to the water matrix's complexity. Therefore, using Donnan Dialysis to decrease natural waters hardness was revealed to be suitable.

5.
Membranes (Basel) ; 13(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36837755

ABSTRACT

Research on membranes and their associated processes was initiated in 1970 at the University of Paris XII/IUT de Créteil, which became in 2010 the University Paris-Est Créteil (UPEC). This research initially focused on the development and applications of pervaporation membranes, then concerned the metrology of ion-exchange membranes, then expanded to dialysis processes using these membranes, and recently opened to composite membranes and their applications in production or purification processes. Both experimental and fundamental aspects have been developed in parallel. This evolution has been reinforced by an opening to the French and European industries, and to the international scene, especially to the Krasnodar Membrane Institute (Kuban State University-Russia) and to the Department of Chemistry, (Qassim University-Saudi Arabia). Here, we first presented the history of this research activity, then developed the main research axes carried out at UPEC over the 2012-2022 period; then, we gave the main results obtained, and finally, showed the cross contribution of the developed collaborations. We avoided a chronological presentation of these activities and grouped them by theme: composite membranes and ion-exchange membranes. For composite membranes, we have detailed three applications: highly selective lithium-ion extraction, bleach production, and water and industrial effluent treatments. For ion-exchange membranes, we focused on their characterization methods, their use in Neutralization Dialysis for brackish water demineralization, and their fouling and antifouling processes. It appears that the research activities on membranes within UPEC are very dynamic and fruitful, and benefit from scientific exchanges with our Russian partners, which contributed to the development of strong membrane activity on water treatment within Qassim University. Finally, four main perspectives of this research activity were given: the design of autonomous and energy self-sufficient processes, refinement of characterization by Electrochemical Scanning Microscopy, functional membrane separators, and green membrane preparation and use.

6.
Membranes (Basel) ; 12(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36363621

ABSTRACT

A high cost of high-purity materials is one of the major factors that limit the application of ceramic membranes. Consequently, the focus was shifted to using natural and abundant low-cost materials such as zeolite, clay, sand, etc. as alternatives to well-known pure metallic oxides, such as alumina, silica, zirconia and titania, which are usually used for ceramic membrane fabrication. As a contribution to this area, the development and characterization of new low-cost ultrafiltration (UF) membranes made from natural Tunisian kaolin are presented in this work. The asymmetric ceramic membranes were developed via layer-by-layer and slip-casting methods by direct coating on tubular supports previously prepared from sand and zeolite via the extrusion process. Referring to the results, it was found that the UF kaolin top layer is homogenous and exhibits good adhesion to different supports. In addition, the kaolin/sand and kaolin/zeolite membranes present an average pore diameter in the range of 4-17 nm and 28 nm, and water permeability of 491 L/h·m2·bar and 182 L/h·m2·bar, respectively. Both membranes were evaluated in their treatment of electroplating wastewater. This was done by removing oil and heavy metals using a homemade crossflow UF pilot plant operated at a temperature of 60 °C to reduce the viscosity of the effluent, and the transmembrane pressure (TMP) of 1 and 3 bar for kaolin/sand and kaolin/zeolite, respectively. Under these conditions, our membranes exhibit high permeability in the range of 306-336 L/h·m2·bar, an almost total oil and lead retention, a retention up to 96% for chemical oxygen demand (COD), 96% for copper and 94% for zinc. The overall data suggest that the developed kaolin membranes have the potential for remediation of oily industrial effluents contaminated by oil and heavy metals.

7.
Membranes (Basel) ; 12(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35877879

ABSTRACT

This work aims to determine the optimized ultrafiltration conditions for industrial wastewater treatment loaded with oil and heavy metals generated from an electroplating industry for water reuse in the industrial process. A ceramic multitubular membrane was used for the almost total retention of oil and turbidity, and the high removal of heavy metals such as Pb, Zn, and Cu (>95%) was also applied. The interactive effects of the initial oil concentration (19−117 g/L), feed temperature (20−60 °C), and applied transmembrane pressure (2−5 bar) on the chemical oxygen demand removal (RCOD) and permeate flux (Jw) were investigated. A Box−Behnken experimental design (BBD) for response surface methodology (RSM) was used for the statistical analysis, modelling, and optimization of operating conditions. The analysis of variance (ANOVA) results showed that the COD removal and permeate flux were significant since they showed good correlation coefficients of 0.985 and 0.901, respectively. Mathematical modelling revealed that the best conditions were an initial oil concentration of 117 g/L and a feed temperature of 60 °C, under a transmembrane pressure of 3.5 bar. In addition, the effect of the concentration under the optimized conditions was studied. It was found that the maximum volume concentrating factor (VCF) value was equal to five and that the pollutant retention was independent of the VCF. The fouling mechanism was estimated by applying Hermia's model. The results indicated that the membrane fouling given by the decline in the permeate flux over time could be described by the cake filtration model. Finally, the efficiency of the membrane regeneration was proved by determining the water permeability after the chemical cleaning process.

8.
Membranes (Basel) ; 12(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35736310

ABSTRACT

Commercial bleach (3.6 wt% active chlorine) is prepared by diluting highly concentrated industrial solutions of sodium hypochlorite (about 13 wt% active chlorine) obtained mainly by bubbling chlorine gas into dilute caustic soda. The chlorine and soda used are often obtained by electrolyzing a sodium chloride solution in two-compartment cells (chlorine-soda processes). On a smaller scale, small units used for swimming pool water treatment, for example, allow the production of low-concentration bleach (0.3 to 1 wt% active chlorine) by use of a direct electrolysis of sodium chloride brine. The oxidation and degradation reaction of hypochlorite ion (ClO-) at the anode is the major limiting element of this two-compartment process. In this study, we have developed a new process to obtain higher levels of active chlorine up to 3.6%, or 12° chlorometric degree. For this purpose, we tested a device consisting of a zero-gap electrolysis cell, with three compartments separated by a pair of membranes that can be porous or ion-exchange. The idea is to generate in the anode compartment hypochlorous acid (HClO) at high levels by continuously adjusting its pH to a value between 4.5 and 5.5. In the cathodic compartment, caustic soda is obtained, while the central compartment is supplied with brine. The hypochlorous acid solution is then neutralized with a concentrated solution of NaOH to obtain bleach. In this work, we studied several membrane couples that allowed us to optimize the operating conditions and to obtain bleach with contents close to 1.8 wt% of active chlorine. The results obtained according to the properties of the membranes, their durability, and the imposed electrochemical conditions were discussed.

9.
Membranes (Basel) ; 12(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35207165

ABSTRACT

The recent expansion of global Lithium Ion Battery (LIBs) production has generated a significant stress on the lithium demand. One of the means to produce this element is its extraction from different aqueous sources (salars, geothermal water etc.). However, the presence of other mono- and divalent cations makes this extraction relatively complex. Herein, we propose lithium-sodium separation by an electrodialysis (ED) process using a Lithium Composite Membrane (LCM), whose effectiveness was previously demonstrated by a Diffusion Dialysis process (previous work). LCM performances in terms of lithium Recovery Ratio (RR(Li+)) and Selectivity (S(Li/Na)) were investigated using different Li+/Na+ reconstituted solutions and two ED cells: a two-compartment cell was chosen for its simplicity, and a four-compartment one was selected for its potential to isolate the redox reactions at the electrodes. We demonstrated that the four-compartment cell use was advantageous since it provided membrane protection from protons and gases generated by the electrodes but that membrane selectivity was negatively affected. The impact of the applied current density and the concentration ratio of Na+ and Li+ in the feed compartment ([Na+]F/[Li+]F) were tested using the four-compartment cell. We showed that increasing the current density led to an improvement of RR(Li+) but to a reduction in the LCM selectivity towards Li+. Increasing the [Na+]F/[Li+]F ratios to 10 had a positive effect on the membrane performance. However, for high values of this ratio, both RR(Li+) and S(Li/Na) decreased. The optimal results were obtained at [Na+]F/[Li+]F near 10, where we succeeded in extracting more than 10% of the initial Li+ concentration with a selectivity value around 112 after 4 h of ED experiment at 0.5 mA·cm-2. Thus, we can objectively estimate that the concept of this selective extraction of Li+ from a mixture even when concentrated in Na+ using an ED process was validated.

10.
Membranes (Basel) ; 11(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34832040

ABSTRACT

Ion-exchange membranes (IEMs) are increasingly used in dialysis and electrodialysis processes for the extraction, fractionation and concentration of valuable components, as well as reagent-free control of liquid media pH in the food industry. Fouling of IEMs is specific compared to that observed in the case of reverse or direct osmosis, ultrafiltration, microfiltration, and other membrane processes. This specificity is determined by the high concentration of fixed groups in IEMs, as well as by the phenomena inherent only in electromembrane processes, i.e., induced by an electric field. This review analyzes modern scientific publications on the effect of foulants (mainly typical for the dairy, wine and fruit juice industries) on the structural, transport, mass transfer, and electrochemical characteristics of cation-exchange and anion-exchange membranes. The relationship between the nature of the foulant and the structure, physicochemical, transport properties and behavior of ion-exchange membranes in an electric field is analyzed using experimental data (ion exchange capacity, water content, conductivity, diffusion permeability, limiting current density, water splitting, electroconvection, etc.) and modern mathematical models. The implications of traditional chemical cleaning are taken into account in this analysis and modern non-destructive membrane cleaning methods are discussed. Finally, challenges for the near future were identified.

11.
Membranes (Basel) ; 11(10)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34677497

ABSTRACT

The removal of boron by Donnan dialysis from aqueous solutions has been studied according to response surface methodology (RSM). First, a preliminary study was performed with two membranes (AFN and ACS) in order to determine the experimental field based on different parameters, such as the pH of the feed compartment, the concentration of counter-ions in the receiver compartment, and the concentration of boron in the feed compartment. The best removal rate of boron was 75% with the AFN membrane, but only 48% with the ACS membrane. Then, a full-factor design was developed to determine the influence of these parameters and their interactions on the removal of boron by Donnan dialysis. The pH of the feed compartment was found to be the most important parameter. The RSM was applied according to the Doehlert model to determine the optimum conditions ([B] = 66 mg/L, pH = 11.6 and [Cl-] = 0.5 mol/L) leading to 88.8% of boron removal with an AFN membrane. The use of the RSM can be considered a good solution to determine the optimum condition for 13.8% compared to the traditional "one-at-a-time" method.

12.
Membranes (Basel) ; 11(10)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34677555

ABSTRACT

Electrodialysis (ED) was first established for water desalination and is still highly recommended in this field for its high water recovery, long lifetime and acceptable electricity consumption. Today, thanks to technological progress in ED processes and the emergence of new ion-exchange membranes (IEMs), ED has been extended to many other applications in the food industry. This expansion of uses has also generated several problems such as IEMs' lifetime limitation due to different ageing phenomena (because of organic and/or mineral compounds). The current commercial IEMs show excellent performance in ED processes; however, organic foulants such as proteins, surfactants, polyphenols or other natural organic matters can adhere on their surface (especially when using anion-exchange membranes: AEMs) forming a colloid layer or can infiltrate the membrane matrix, which leads to the increase in electrical resistance, resulting in higher energy consumption, lower water recovery, loss of membrane permselectivity and current efficiency as well as lifetime limitation. If these aspects are not sufficiently controlled and mastered, the use and the efficiency of ED processes will be limited since, it will no longer be competitive or profitable compared to other separation methods. In this work we reviewed a significant amount of recent scientific publications, research and reviews studying the phenomena of IEM fouling during the ED process in food industry with a special focus on the last decade. We first classified the different types of fouling according to the most commonly used classifications. Then, the fouling effects, the characterization methods and techniques as well as the different fouling mechanisms and interactions as well as their influence on IEM matrix and fixed groups were presented, analyzed, discussed and illustrated.

13.
Membranes (Basel) ; 9(9)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484438

ABSTRACT

The use of enzymatic agents as biological solutions for cleaning ion-exchange membranes fouled by organic compounds during electrodialysis (ED) treatments in the food industry could be an interesting alternative to chemical cleanings implemented at an industrial scale. This paper is focused on testing the cleaning efficiency of three enzyme classes (ß-glucanase, protease, and polyphenol oxidase) chosen for their specific actions on polysaccharides, proteins, and phenolic compounds, respectively, fouled on a homogeneous cation-exchange membrane (referred CMX-Sb) used for tartaric stabilization of red wine by ED in industry. First, enzymatic cleaning tests were performed using each enzyme solution separately with two different concentrations (0.1 and 1.0 g/L) at different incubation temperatures (30, 35, 40, 45, and 50 °C). The evolution of membrane parameters (electrical conductivity, ion-exchange capacity, and contact angle) was determined to estimate the efficiency of the membrane's principal action as well as its side activities. Based on these tests, we determined the optimal operating conditions for optimal recovery of the studied characteristics. Then, cleaning with three successive enzyme solutions or the use of two enzymes simultaneously in an enzyme mixture were tested taking into account the optimal conditions of their enzymatic activity (concentration, temperatures, and pH). This study led to significant results, indicating effective external and internal cleaning by the studied enzymes (a recovery of at least 25% of the electrical conductivity, 14% of the ion-exchange capacity, and 12% of the contact angle), and demonstrated the presence of possible enzyme combinations for the enhancement of the global cleaning efficiency or reducing cleaning durations. These results prove, for the first time, the applicability of enzymatic cleanings to membranes, the inertia of their action towards polymer matrix to the extent that the choice of enzymes is specific to the fouling substrates.

14.
Org Biomol Chem ; 2(19): 2786-92, 2004 Oct 07.
Article in English | MEDLINE | ID: mdl-15455150

ABSTRACT

A series of mixed [2 + 2'] p-tert-butylcalix[4]arene have been synthesised by selective 1,3-dialkylation of phenolic groups using various alkylating agents such as benzyl bromide, methyl iodide, ethyl bromoacetate, and 2-methoxyethyl tosylate. The extraction and complexation properties of the synthesized calixarenes towards alkali and alkaline earth metal cations have been investigated in acetonitrile by means of UV spectrophotometry and 1H NMR spectroscopy. The results show the formation of ML and/or ML2 species depending on the ligand and the cation. The enthalpies and entropies of complexation of alkali metal cations by a tetraglycol, diglycol-dibenzyl and diglycol-diester derivatives have been obtained from calorimetric measurements. The results revealed that the formation of ML species is controlled by enthalpy while the formation of ML2 from ML is entropy driven.


Subject(s)
Calixarenes/chemical synthesis , Calixarenes/metabolism , Metals, Alkali/metabolism , Metals, Alkaline Earth/metabolism , Calixarenes/chemistry , Ligands , Metals, Alkali/chemistry , Metals, Alkaline Earth/chemistry
15.
Org Biomol Chem ; 1(18): 3144-6, 2003 Sep 21.
Article in English | MEDLINE | ID: mdl-14527144

ABSTRACT

Determination of the crystal structure of the acetonitrile inclusate of the complex formed between sodium trifluoromethanesulfonate (triflate, CF3SO3-) and the narrow-rim functionalised calix[4]arene, 5,11,17,23-tetra-tert-butyl-25,27-di(phenylmethoxy)-26,28-di(2'-methoxyethoxy)calix[4]arene, has shown, somewhat unexpectedly, that the diether pendent arms do not chelate the sodium cation, although coordination of all four phenolic oxygen atoms does draw the calixarene into a nearly symmetrical cone form, consistent with conclusions drawn earlier from solution 1H NMR data. Crystals of C64H80O6.NaO3S.CF3.CH3CN obtained from acetonitrile solvent are monoclinic, C2/c, a structure determination at 'low' temperature (153 K) resolving several difficulties encountered in earlier attempts to analyse data acquired at approximately 295 K, and indicative of an interesting temperature dependence of substituent and anion orientations.


Subject(s)
Chemistry, Organic/methods , Ions/chemistry , Metals/chemistry , Sodium/chemistry , Anions , Binding, Competitive , Calixarenes , Cations , Magnetic Resonance Spectroscopy , Models, Chemical , Models, Molecular , Oxygen/metabolism , Polycyclic Compounds , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...