Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(19): 16238-16243, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29715003

ABSTRACT

All known materials wear under extended mechanical contacting. Superlubricity may present solutions, but is an expressed mystery in C-based materials. We report negative wear of carbon nitride films; a wear-less condition with mechanically induced material inflation at the nanoscale and friction coefficient approaching ultralow values (0.06). Superlubricity in carbon nitride is expressed as C-N bond breaking for reduced coupling between graphitic-like sheets and eventual N2 desorption. The transforming surface layer acts as a solid lubricant, whereas the film bulk retains its high elasticity. The present findings offer new means for materials design at the atomic level, and for property optimization in wear-critical applications like magnetic reading devices or nanomachines.

2.
Beilstein J Nanotechnol ; 8: 1760-1768, 2017.
Article in English | MEDLINE | ID: mdl-28904837

ABSTRACT

Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic-plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.

SELECTION OF CITATIONS
SEARCH DETAIL
...