Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 214: 118155, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35184017

ABSTRACT

Although achieving good activated sludge settleability is a key requirement for meeting effluent quality criteria, wastewater treatment plants often face undesired floc structure changes. Filamentous bulking has widely been studied, however, viscous sludge formation much less investigated so far. Our main goal was to find relationship between sludge floc structure and related rheological properties, moreover, to estimate pressure loss in pipe networks through hydrodynamic modelling of the non-Newtonian flows in case of well settling (ideal-like), viscous and filamentous sludge. Severe viscous and filamentous kinds of bulking were generated separately in continuous-flow lab-scale systems initially seeded with the same reference (ideal-like) biomass and the entire evolution of viscous and filamentous bulking was monitored. The results suggested correlation between the rheological properties and the floc structure transformations, and showed the most appropriate fit for the Herschel-Bulkley model (vs. Power-law and Bingham). Validated computational fluid dynamics studies estimated the pipe pressure loss in a wide Reynolds number range for the initial well settling (reference) and the final viscous and filamentous sludge as well. A practical standard modelling protocol was developed for improving energy efficiency of sludge pumping in different floc structure scenarios.

2.
Water Sci Technol ; 80(2): 357-364, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31537772

ABSTRACT

It is widely assumed that non-aerated selectors are very efficient in nutrient removal, and especially anaerobic basins may largely contribute to good sludge settleability as well. However, based on results measured in full-scale, this paper draws attention to the fact that with decreasing availability of readily biodegradable carbon source (rbCOD) being experienced worldwide, oxygen penetration into non-aerated basins through the uncovered surface may no longer be considered negligible. When the oxygen mass transfer is significant compared to the available influent rbCOD, non-aerated selectors should be regarded as basins with low dissolved oxygen (low DO) concentrations that may underperform with respect to nutrient removal and favor the growth of filaments, especially during low-loaded conditions. In order to fully exclude oxygen penetration, floating seals have been developed and applied at the North-Budapest Wastewater Treatment Plant in Hungary. Comparative full-scale studies showed prevention of significant amounts of influent rbCOD loss (up to 60 mg/L) through the application of this new technology. This amount of saved, non-oxidised but fermented carbon source could be accordingly used for enhancing biological P-removal. Due to the elimination of microaerophilic conditions, the undesirable growth of filamentous bacteria could also be avoided, leading to significantly better activated sludge settling.


Subject(s)
Oxygen , Waste Disposal, Fluid , Bioreactors , Hungary , Sewage
3.
Water Sci Technol ; 65(9): 1676-83, 2012.
Article in English | MEDLINE | ID: mdl-22508132

ABSTRACT

A survey has been carried out involving 55 Hungarian wastewater treatment plants in order to evaluate the wastewater quality, the applied technologies and the resultant problems. Characteristically the treatment temperature is very wide-ranging from less than 10 °C to higher than 26 °C. Influent quality proved to be very variable regarding both the organic matter (typical COD concentration range 600-1,200 mg l(-1)) and the nitrogen content (typical NH(4)-N concentration range 40-80 mg l(-1)). As a consequence, significant differences have been found in the carbon availability for denitrification from site to site. Forty two percent of the influents proved to lack an appropriate carbon source. As a consequence of carbon deficiency as well as technologies designed and/or operated with non-efficient denitrification, rising sludge in the secondary clarifiers typically occurs especially in summer. In case studies, application of intermittent aeration, low DO reactors, biofilters and anammox processes have been evaluated, as different biological nitrogen removal technologies. With low carbon source availability, favoring denitrification over enhanced biological phosphorus removal has led to an improved nitrogen removal.


Subject(s)
Environmental Monitoring/methods , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Purification/methods , Data Collection , Denitrification , Hungary , Nitrogen/chemistry , Oxygen , Phosphorus/chemistry , Surveys and Questionnaires , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...