Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Phys Rev Lett ; 121(8): 085502, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30192590

ABSTRACT

Much recent attention has been devoted towards unraveling the microscopic optoelectronic properties of hybrid organic-inorganic perovskites. Here we investigate by coherent inelastic neutron scattering spectroscopy and Brillouin light scattering, low frequency acoustic phonons in four different hybrid perovskite single crystals: MAPbBr_{3}, FAPbBr_{3}, MAPbI_{3}, and α-FAPbI_{3} (MA: methylammonium, FA: formamidinium). We report a complete set of elastic constants characterized by a very soft shear modulus C_{44}. Further, a tendency towards an incipient ferroelastic transition is observed in FAPbBr_{3}. We observe a systematic lower sound group velocity in the technologically important iodide-based compounds compared to the bromide-based ones. The findings suggest that low thermal conductivity and hot phonon bottleneck phenomena are expected to be enhanced by low elastic stiffness, particularly in the case of the ultrasoft α-FAPbI_{3}.

3.
J Microsc ; 269(2): 161-167, 2018 02.
Article in English | MEDLINE | ID: mdl-28850665

ABSTRACT

Understanding the oxidation and reduction mechanisms of transition metals, such as nickel (Ni), is important for their use in industrial applications of catalysis. A powerful technique for investigating the redox reactive species is in situ environmental transmission electron microscopy (ETEM), where oxidation and reduction can be tracked in real time. One particular difficulty in understanding the underlying reactions is understanding the underlying morphology of the starting structure in a reaction, in particular the defects contained in the material, and the exposed surface facets. Here-in, we use a colloidal nanoparticle synthesis in a continuous flow reactor to form nanoplates of nickel coated with oleylamine as a capping agent. We utilise an in situ heating procedure at 300 °C in vacuum to remove the oleylamine ligands, and then oxidise the Ni nanoparticles at 25 °C with 2 Pa oxygen, and follow the nanoparticles initial oxidation. After that, the nanoparticles are oxidised at 200 and 300 °C, making the size of the oxide shell increase to ∼4 nm. The oxide shell could be reduced under 2 Pa hydrogen at 500 °C to its initial size of ∼1 nm. High temperature oxidation encouraged the nanoparticles to form pure NiO nanoparticles, which occurred via the Kirkendall effect leading to hollowing and void formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...