Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 26(6): 1529-1535, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26898814

ABSTRACT

MK-4256, a tetrahydro-ß-carboline sstr3 antagonist, was discontinued due to a cardiovascular (CV) adverse effect observed in dogs. Additional investigations revealed that the CV liability (QTc prolongation) was caused by the hERG off-target activity of MK-4256 and was not due to sstr3 antagonism. In this Letter, we describe our extensive SAR effort at the C3 position of the tetrahydro-ß-carboline structure. This effort resulted in identification of 5-fluoro-pyridin-2-yl as the optimal substituent on the imidazole ring to balance sstr3 activity and the hERG off-target liability.


Subject(s)
Carbolines/chemistry , Carbolines/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Animals , Carbolines/chemical synthesis , Dogs , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Rats , Structure-Activity Relationship
2.
ACS Med Chem Lett ; 5(7): 748-53, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25050159

ABSTRACT

Antagonism of somatostatin subtype receptor 3 (sstr3) has emerged as a potential treatment of Type 2 diabetes. Unfortunately, the development of our first preclinical candidate, MK-4256, was discontinued due to a dose-dependent QTc (QT interval corrected for heart rate) prolongation observed in a conscious cardiovascular (CV) dog model. As the fate of the entire program rested on resolving this issue, it was imperative to determine whether the observed QTc prolongation was associated with hERG channel (the protein encoded by the human Ether-à-go-go-Related Gene) binding or was mechanism-based as a result of antagonizing sstr3. We investigated a structural series containing carboxylic acids to reduce the putative hERG off-target activity. A key tool compound, 3A, was identified from this SAR effort. As a potent sstr3 antagonist, 3A was shown to reduce glucose excursion in a mouse oGTT assay. Consistent with its minimal hERG activity from in vitro assays, 3A elicited little to no effect in an anesthetized, vagus-intact CV dog model at high plasma drug levels. These results afforded the critical conclusion that sstr3 antagonism is not responsible for the QTc effects and therefore cleared a path for the program to progress.

3.
ACS Med Chem Lett ; 5(6): 717-21, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24944750

ABSTRACT

We report herein the identification of MK-4409, a potent and selective fatty acid amide hydrolase (FAAH) inhibitor. Starting from a high throughput screening (HTS) hit, medicinal chemistry efforts focused on optimizing of FAAH inhibition in vitro potency, improving the pharmacokinetic (PK) profile, and increasing in vivo efficacy in rodent inflammatory and neuropathic pain assays.

4.
ACS Med Chem Lett ; 4(6): 509-13, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-24900701

ABSTRACT

We report herein the discovery of a fatty acid amide hydrolase (FAAH) positron emission tomography (PET) tracer. Starting from a pyrazole lead, medicinal chemistry efforts directed toward reducing lipophilicity led to the synthesis of a series of imidazole analogues. Compound 6 was chosen for further profiling due to its appropriate physical chemical properties and excellent FAAH inhibition potency across species. [(11)C]-6 (MK-3168) exhibited good brain uptake and FAAH-specific signal in rhesus monkeys and is a suitable PET tracer for imaging FAAH in the brain.

5.
ACS Med Chem Lett ; 3(6): 484-9, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-24900499

ABSTRACT

A structure-activity relationship study of the imidazolyl-ß-tetrahydrocarboline series identified MK-4256 as a potent, selective SSTR3 antagonist, which demonstrated superior efficacy in a mouse oGTT model. MK-4256 reduced glucose excursion in a dose-dependent fashion with maximal efficacy achieved at doses as low as 0.03 mg/kg po. As compared with glipizide, MK-4256 showed a minimal hypoglycemia risk in mice.

6.
7.
Bioorg Med Chem Lett ; 20(22): 6524-32, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20933410

ABSTRACT

We report an SAR study of MC4R analogs containing spiroindane heterocyclic privileged structures. Compound 26 with N-Me-1,2,4-triazole moiety possesses exceptional potency at MC4R and potent anti-obesity efficacy in a mouse model. However, the efficacy is not completely mediated through MC4R. Additional SAR studies led to the discovery of compound 32, which is more potent at MC4R. Compound 32 demonstrates MC4R mediated anti-obesity efficacy in rodent models.


Subject(s)
Obesity/drug therapy , Receptor, Melanocortin, Type 4/agonists , Triazoles/pharmacology , Animals , Chromatography, High Pressure Liquid , Disease Models, Animal , Mice , Mice, Knockout , Molecular Structure , Rats , Receptor, Melanocortin, Type 4/genetics , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/therapeutic use
10.
Bioorg Med Chem Lett ; 20(15): 4399-405, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20598882

ABSTRACT

We report a series of potent and selective MC4R agonists based on spiroindane amide privileged structures for potential treatments of obesity. Among the synthetic methods used, Method C allows rapid synthesis of the analogs. The series of compounds can afford high potency on MC4R as well as good rodent pharmacokinetic profiles. Compound 1r (MK-0489) demonstrates MC4R mediated reduction of food intake and body weight in mouse models. Compound 1r is efficacious in 14-day diet-induced obese (DIO) rat models.


Subject(s)
Amides/chemistry , Anti-Obesity Agents/chemistry , Obesity/drug therapy , Pyrrolidines/chemistry , Receptor, Melanocortin, Type 4/agonists , Spiro Compounds/chemistry , Amides/pharmacokinetics , Amides/therapeutic use , Animals , Anti-Obesity Agents/pharmacokinetics , Anti-Obesity Agents/therapeutic use , Body Weight/drug effects , Humans , Mice , Mice, Knockout , Pyrrolidines/pharmacokinetics , Pyrrolidines/therapeutic use , Rats , Rats, Sprague-Dawley , Receptor, Melanocortin, Type 4/metabolism , Spiro Compounds/pharmacokinetics , Spiro Compounds/therapeutic use , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 20(7): 2106-10, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20207541

ABSTRACT

We report the design, synthesis and properties of spiroindane based compound 1, a potent, selective, orally bioavailable, non-peptide melanocortin subtype-4 receptor agonist. Compound 1 shows excellent erectogenic activity in the rodent models.


Subject(s)
Erectile Dysfunction/drug therapy , Indans/chemistry , Indans/therapeutic use , Receptor, Melanocortin, Type 4/agonists , Receptor, Melanocortin, Type 4/metabolism , Spiro Compounds/chemistry , Spiro Compounds/therapeutic use , Animals , CHO Cells , Cricetinae , Cricetulus , Dogs , Haplorhini , Humans , Indans/pharmacokinetics , Indans/pharmacology , Male , Mice , Molecular Structure , Protein Binding , Rats , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Structure-Activity Relationship
12.
13.
Bioorg Med Chem Lett ; 15(15): 3501-5, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-15982875

ABSTRACT

A novel isoquinuclidine containing selective melanocortin subtype-4 receptor small molecule agonist, 3 (RY764), is reported. Its in vivo characterization revealed mechanism-based food intake reduction and erectile activity augmentation in rodents.


Subject(s)
Aza Compounds/pharmacology , Eating/drug effects , Penile Erection/drug effects , Piperazines/pharmacology , Piperidines/pharmacology , Receptor, Melanocortin, Type 4/agonists , Animals , Aza Compounds/chemical synthesis , Humans , Male , Microsomes, Liver/metabolism , Piperazines/chemistry , Piperidines/chemical synthesis , Protein Binding , Quinuclidines/chemistry , Rats , Rats, Sprague-Dawley , Rodentia , Structure-Activity Relationship , Time Factors
15.
J Med Chem ; 45(21): 4589-93, 2002 Oct 10.
Article in English | MEDLINE | ID: mdl-12361385

ABSTRACT

Synthetic and natural peptides that act as nonselective melanocortin receptor agonists have been found to be anorexigenic and to stimulate erectile activity. We report the design and development of 1, a potent, selective (1184-fold vs MC3R, 350-fold vs MC5R), small-molecule agonist of the MC4 receptor. Pharmacological testing confirms the food intake lowering effects of MC4R agonism and suggests another role for the receptor in the stimulation of erectile activity.


Subject(s)
Isoquinolines/chemical synthesis , Receptors, Corticotropin/agonists , Tetrahydroisoquinolines , Triazoles/chemical synthesis , Animals , Binding, Competitive , Biological Availability , CHO Cells , Cricetinae , Dogs , Eating/drug effects , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Molecular Conformation , Penile Erection/drug effects , Rats , Receptor, Melanocortin, Type 3 , Receptor, Melanocortin, Type 4 , Receptors, Melanocortin , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...