Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 12(12): 9319-24, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23447995

ABSTRACT

Superparamagnetic iron-oxide (SPIO) particles were synthesized by the co-precipitation method and the oleic acid-coated SPIO (OA-SPIO) was then obtained by a surface grafting procedure. A stock sample of magnetic oil (MO) with 1.6% particle volume fraction (VF) was obtained by dispersing the OA-SPIO in insulating naphthenic oil. The MO stock sample was diluted in the same naphthenic oil to yield MO with 0.1, 0.04, 0.02, and 0.01% VF. Moreover, the 0.04% VF MO sample was manipulated to yield MO samples with water content of 26, 37, and 63 mg L(-1). The spinel structure of OA-SPIO was assessed by XRD and the average diameter of 8.3 nm was provided by TEM analysis. The saturation magnetization at room temperature (RT) was 70 emu/g and no remanence or coercivity was observed. The average hydrodynamic diameter (D(H)) of the colloidal particles suspended within the 0.04% VF MO sample was 58 nm. After aging for 30 days at RT no change was observed for the lowest water content MO sample (26 mg L(-1)). However, D(H) equals to 270 nm was observed for the highest water content MO sample (63 mg L(-1)). The MO samples with 26 mg L(-1) water content were found stable under heating at 90 degrees C for all VF investigated. We found the insulation resistance dropping significantly as VF and temperature increases. The lowest value found was 11 GOhms for the 0.1% VF at 60 degrees C, which is an acceptable value for MO.

2.
J Nanosci Nanotechnol ; 12(10): 8061-6, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23421179

ABSTRACT

Nanosized maghemite-like particles with reduced size-distribution were obtained using a one-pot synthesis route in aqueous medium. Forced hydrolysis of iron ions in ammoniac solution led to the formation of magnetite nanoparticles that were oxidized to maghemite in a hydrothermal digestion step that reduced the polydispersity of nanograins. The prepared nanoparticles were characterized by chemical analysis, X-ray diffractometry, magnetization, Raman spectroscopy and transmission electron microscopy measurements. Data showed that 14 nm-sized particles with polydispersity of about 0.14 were produced and, differently from other procedures, neither additional steps nor toxic reagents were needed to reduce size-dispersion or to oxidize magnetite to maghemite. These facts per se turn such nanodevice into a good potential choice for biomedical applications.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(2 Pt 1): 021407, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20866809

ABSTRACT

The field dependence of the optical transmission of tartrate-coated and polyaspartate-coated magnetite-based aqueous colloids was studied. The colloidal stock samples were diluted to prepare a series of samples containing different particle volume fractions ranging from 0.17% up to 1.52% and measured at distinct times after preparation (1, 30, 120, 240, and 1460 days). We show that the magneto-transmissivity behavior is mainly described by the rotation of linear chains, at the low-field range, whereas the analysis of the data provided the measurement of the average chain length. Results also reveal that the optical transmissivity has a minimum at a particular critical field, whose origin is related to the onset of columns of chains built from isolated particle chains, i.e., due to a columnar phase transition. We found the critical field reducing as the particle volume fraction increases and as the sample's aging time increases. To investigate the origin of this phenomenon we used phase condensation models and Mie's theory applied to a chain of spheres and to an infinite cylinder. Possible implications for magnetophotonic colloidal-based devices and biomedical applications were discussed.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/radiation effects , Ferrosoferric Oxide/chemistry , Ferrosoferric Oxide/radiation effects , Models, Chemical , Computer Simulation , Electric Impedance , Electromagnetic Fields , Magnetics , Phase Transition/radiation effects
4.
Nanotechnology ; 20(4): 045103, 2009 Jan 28.
Article in English | MEDLINE | ID: mdl-19417311

ABSTRACT

Magnetoliposomes consist of vesicles composed of a phospholipid membrane encapsulating magnetic nanoparticles. These systems have several important applications, such as in MRI contrast agents, drug and gene carriers, and cancer treatment devices. For all of these applications, controlling the number of encapsulated magnetic nanoparticles is a key issue. In this work, we used a magneto-optical technique to obtain information about the efficiency of encapsulation, the number of nanoparticles encapsulated per liposome and also about the formation of the nanoparticle structures. The parameters studied included the effect of the duration of sonication, the presence of cholesterol in the liposome membrane, as well as time-related stability. For the liposomal vesicles prepared in this work, we found between 35 and 300 nanoparticles encapsulated per liposome, depending on the experimental conditions, consisting of small linear chains of nanoparticles, basically trimers and tetramers. The methodology developed might be useful for the investigation and improvement of the properties of several magnetic nanocarrier systems.


Subject(s)
Ferrosoferric Oxide/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , Electromagnetic Fields
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(6 Pt 1): 061507, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19256846

ABSTRACT

We investigate a magnetic fluid composed of magnetite nanoparticles surfacted with dodecanoic acid molecules and stably dispersed in a hydrocarbon solvent. A comparison between Monte Carlo simulation and different experimental techniques allows us to validate our methodology and investigate the behavior of the surfactant molecules. Our analysis, based on the Langmuir model, suggests that the surfactant grafting number on isolate nanoparticles increases with the nanoparticle concentration, while the grafting on agglomerated nanoparticles presents a more complicated behavior. Our results suggests that, if properly coated and at a certain concentration range, colloids can become stable even in the presence of agglomerates. The role of the Hamaker constant, which controls the van der Waals interaction intensity, was also investigated. We have found that the ratio between grafting and Hamaker constant governs the level of nanoparticle agglomeration.

6.
Biophys J ; 78(2): 1018-23, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10653815

ABSTRACT

Electron paramagnetic resonance was used to investigate the magnetic material present in abdomens of Pachycondyla marginata ants. A g congruent with 4.3 resonance of high-spin ferric ions and a very narrow g congruent with 2 line are observed. Two principal resonance broad lines, one with g > 4.5 (LF) and the other in the region of g congruent with 2 (HF), were associated with the biomineralization process. The resonance field shift between these two lines, HF and LF, associated with magnetic nanoparticles indicates the presence of cluster structures containing on average three single units of magnetite-based nanoparticles. Analysis of the temperature dependence of the HF resonance linewidths supports the model picture of isolated magnetite nanostructures of approximately 13 nm in diameter with a magnetic energy of 544 K. These particles are shown to present a superparamagnetic behavior at room temperature. The use of these superparamagnetic particle properties for the magnetoreception process of the ants is suggested.


Subject(s)
Ants/chemistry , Magnetics , Thorax/chemistry , Animals , Anisotropy , Electron Spin Resonance Spectroscopy , Iron/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...