Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 59(7-8): 1495-1527, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34184181

ABSTRACT

Accurate segmentation and delineation of the sub-tumor regions are very challenging tasks due to the nature of the tumor. Traditionally, convolutional neural networks (CNNs) have succeeded in achieving most promising performance for the segmentation of brain tumor; however, handcrafted features remain very important in identification of tumor's boundary regions accurately. The present work proposes a robust deep learning-based model with three different CNN architectures along with pre-defined handcrafted features for brain tumor segmentation, mainly to find out more prominent boundaries of the core and enhanced tumor regions. Generally, automatic CNN architecture does not use the pre-defined handcrafted features because it extracts the features automatically. In this present work, several pre-defined handcrafted features are computed from four MRI modalities (T2, FLAIR, T1c, and T1) with the help of additional handcrafted masks according to user interest and fed to the convolutional features (automatic features) to improve the overall performance of the proposed CNN model for tumor segmentation. Multi-pathway CNN is explored in this present work along with single-pathway CNN, which extracts simultaneously both local and global features to identify the accurate sub-regions of the tumor with the help of handcrafted features. The present work uses a cascaded CNN architecture, where the outcome of a CNN is considered as an additional input information to next subsequent CNNs. To extract the handcrafted features, convolutional operation was applied on the four MRI modalities with the help of several pre-defined masks to produce a predefined set of handcrafted features. The present work also investigates the usefulness of intensity normalization and data augmentation in pre-processing stage in order to handle the difficulties related to the imbalance of tumor labels. The proposed method is experimented on the BraST 2018 datasets and achieved promising results than the existing (currently published) methods with respect to different metrics such as specificity, sensitivity, and dice similarity coefficient (DSC) for complete, core, and enhanced tumor regions. Quantitatively, a notable gain is achieved around the boundaries of the sub-tumor regions using the proposed two-pathway CNN along with the handcrafted features. Graphical Abstract This data is mandatory. Please provide.


Subject(s)
Brain Neoplasms , Image Processing, Computer-Assisted , Brain Neoplasms/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neural Networks, Computer
2.
Med Biol Eng Comput ; 57(12): 2567-2598, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31654293

ABSTRACT

Positron emission tomography (PET) image denoising is a challenging task due to the presence of noise and low spatial resolution compared with other imaging techniques such as magnetic resonance imaging (MRI) and computed tomography (CT). PET image noise can hamper further processing and analysis, such as segmentation and disease screening. The wavelet transform-based techniques have often been proposed for PET image denoising to handle isotropic (smooth details) features. The curvelet transform-based PET image denoising techniques have the ability to handle multi-scale and multi-directional properties such as edges and curves (anisotropic features) as compared with wavelet transform-based denoising techniques. The wavelet denoising method is not optimal for anisotropic features, whereas the curvelet denoising method sometimes has difficulty in handling isotropic features. In order to handle the weaknesses of individual wavelet and curvelet-based methods, the present research proposes an efficient PET image denoising technique based on the combination of wavelet and curvelet transforms, along with a new adaptive threshold selection to threshold the wavelet coefficients in each subband (except last level low pass (LL) residual). The proposed threshold utilizes the advantages of adaptive threshold taken from BayesShrink along with the neighborhood window concept. The present method was tested on both simulated phantom and clinical PET datasets. Experimental results show that our method has achieved better results than the existing methods such as VisuShrink, BayesShrink, NeighShrink, ModineighShrink, curvelet, and an existing wavelet curvelet-based method with respect to different noise measurement metrics, such as mean squared error (MSE), signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), and image quality index (IQI). Furthermore, notable performance is achieved in the case of medical applications such as gray matter segmentation and precise tumor region identification. Graphical Abstract Block diagram of the proposed method. (a) Steps of the proposed denoising method and (b) image information generated by each step of (a).


Subject(s)
Positron-Emission Tomography/methods , Anisotropy , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Signal-To-Noise Ratio , Tomography, X-Ray Computed/methods , Wavelet Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...