Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 291: 112669, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33934019

ABSTRACT

The conversion of old brownfield sites into places once again serving society is becoming an upward global trend, especially in urban areas. Due to the increasingly growing pressure on the expansion of urban green spaces, such sites can become, for instance, urban parks. The aim of the study was to assess whether the solution is appropriate and if it does not pose a potential health risk. Heavy pollution of soils was found out by means of the example of the urban park newly established in a reclaimed area of a historic mining town. The high average values in the topsoil were found out mainly in As (132 mg/kg), Cd (6.8 mg/kg), Pb (535 mg/kg) and Zn (1604 mg/kg). The assessment of the non-carcinogenic health risk has revealed possible As-related adverse health effects in children even at irregular park visits. According to the carcinogenic risk assessment, As, Cd, Cr and Ni can be ranked in the category of an acceptable total risk for regulatory purposes. The health status of park vegetation as a significant component of the urban ecosystem was also assessed. Soil phytotoxicity brought about severe damage to the seedlings, with a mortality rate of up to 84% locally. The results indicate that heavily polluted brownfield sites with historic mining-related activities are not suitable for establishing urban parks even after reclamation and nature-based solutions may not be invariably appropriate. Based on the findings, the management steps that ought to be implemented in the process of brownfield redevelopment into the urban park even after its establishment have been highlighted in order to minimize the health risk to park visitors while providing the required ecosystem services by vegetation.


Subject(s)
Metals, Heavy , Soil Pollutants , Child , China , Cities , Ecosystem , Environmental Monitoring , Humans , Metals, Heavy/analysis , Parks, Recreational , Risk Assessment , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
2.
Chemosphere ; 220: 678-686, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30605810

ABSTRACT

Urban soil areas can be contaminated with potentially dangerous heavy metals (HM), which might have got there by means of the human activity. The aim of the present study was to determine the contamination level of the city park soils and its impact on urban ecosystem. The indices assessing soil contamination such as Enrichment Factor (EF), Geoaccumulation Index (Igeo), Nemerow Pollution Index (IPIN), and indices assessing health risks, namely Hazard Index (HI) and Carcinogenic Risk (CR), have been calculated. Furthermore, the phytotoxic effect of the soil samples has been determined. The soil contains in average 58.6 mg/kg Zn, 0.3 mg/kg Cd, 27.2 mg/kg Pb and 16.6 mg/kg Cu. Based on EF index, it has been confirmed that the increased amounts of Zn, Cd and Pb in the soil are of the anthropogenic origin. The soil may be classified as moderately to strongly polluted in the case of Zn and Pb according to Igeo. Nevertheless, soil contamination in the park is at a safe level as per IPIN. Based on HI and CR indices, it is possible to state that the soil in the park does not pose any health risks. Subject to the outcomes of the toxicity test, the concentrations of HMs found out in the soils are not inhibitory for plants.


Subject(s)
Ecosystem , Metals, Heavy/analysis , Parks, Recreational , Soil Pollutants/analysis , Soil/chemistry , China , Cities , Humans , Metals, Heavy/toxicity , Plants/drug effects , Risk Assessment , Soil Pollutants/toxicity
3.
Chemosphere ; 208: 569-578, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29890495

ABSTRACT

Effective and efficient assessments of the site conditions are required for the sustainable management of landfills. In this study we propose an evaluation method to determine the degree of environmental contamination by the contest of heavy metals (HM) concentrations in soil and plants (Tanacetum vulgare L., Carduus L., Plantago major L.). We compared HM concentrations in the soil, leaves, stem and roots of those native plants. Content of HM in samples was at the same level in all localities, except content of Zn. These values confirm that the area is not naturally burdened by increased HM content in the soil, and also that the deposited municipal waste or the material used for reclamation and composting does not contain risk elements. The content of selected HM was monitored in plants naturally occurring in the area of interest. We can state that the content of individual HM was in the plant biomass at the same level. The measured values confirmed that the largest number of HM was in roots, then in stem and the least in leaves. In addition, specific indexes were determined: BAC, TF, CF, PLI and Igeo. The BAC values confirmed that the individual plants had the ability to accumulate Pb and Cd (BAC> 2) but were limited to bind Mn and Zn (BAC <1). TF values confirmed that plants had a different ability to transport HM from roots to aboveground biomass. Potential soil contamination was detected using CF, PLI and Igeo indexes but contamination by HM was not confirmed.


Subject(s)
Environmental Pollution , Metals, Heavy/analysis , Plants/metabolism , Refuse Disposal , Environmental Monitoring , Metals, Heavy/pharmacokinetics , Risk Assessment , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Waste Disposal Facilities
SELECTION OF CITATIONS
SEARCH DETAIL
...