Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 26(21): 16312-24, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20973580

ABSTRACT

Gold based model systems exhibiting the structural versatility of nanoparticle ensembles and being accessible for surface spectroscopic investigations are expected to provide new information about the adsorption of carbon monoxide, a key process influencing the CO oxidation activity of this noble metal in nanoparticulate form. Accordingly, in the present work the interaction of CO is studied with an ion bombardment modified Au(111) surface by means of a combination of photoelectron spectroscopy (XPS and UPS), sum frequency generation vibrational spectroscopy (SFG), and scanning tunneling microscopy (STM). While no adsorption was found on intact Au(111), data collected on the ion bombarded surface at cryogenic temperatures indicated the presence of stable CO adsorbates below 190 K. A quantitative evaluation of the C 1s XPS spectra and the surface morphology explored by STM revealed that the step edge sites created by ion bombardment are responsible for CO adsorption. The identification of the CO binding sites was confirmed by density functional theory (DFT) calculations. Annealing experiments up to room temperature showed that at temperatures above 190 K unstable adsorbates are formed on the surface under dynamic exposure conditions that disappeared immediately when gaseous CO was removed from the system. Spectroscopic data as well as STM records revealed that prolonged CO exposure at higher pressures of up to 1 mbar around room temperature facilitates massive atomic movements on the roughened surface, leading to its strong reordering toward the structure of the intact Au(111) surface, accompanied by the loss of the CO binding capacity.


Subject(s)
Carbon Monoxide/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Adsorption , Ions/chemistry , Molecular Dynamics Simulation , Oxidation-Reduction , Particle Size , Pressure , Spectrum Analysis , Surface Properties
2.
Carbohydr Res ; 342(1): 124-30, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17145045

ABSTRACT

The degree of deacetylation (DDA) of chitosan determines the biopolymer's physico-chemical properties and technological applications. pH-Potentiometric titration seems to offer a simple and convenient means of determining DDA. However, to obtain accurate pH-potentiometric DDA values, several factors have to be taken into consideration. We found that the moisture content of the air-dry chitosan samples can be as high as 15%, and a reasonable fraction of this humidity cannot be removed by ordinary drying. Corrections have to be made for the ash content, as in some samples it can be as high as 1% by weight. The method of equivalence point determination was also found to cause systematic variations in the results and in some samples extra acid as high as 1 mol% of the free amino content was also identified. To compensate for the latter effect, the second equivalence point of the titration has to be determined separately and the analytical concentration of the acid be corrected for it. All the corrections listed here are necessary to obtain DDA values that are in reasonable agreement with those obtained from (1)H NMR and IR spectroscopic measurements. The need for these corrections severely limits the usefulness of pH-metry for determining accurate DDA values and thus potentiometry is hardly able to compete with other standard spectroscopic procedures, that is, (1)H NMR spectroscopy.


Subject(s)
Chitosan/chemistry , Acetylation , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Molecular Weight , Potentiometry , Protons , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...