Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37224371

ABSTRACT

Centimeter-sized BaTiO3-based crystals grown by top-seeded solution growth from the BaTiO3-CaTiO3-BaZrO3 system were used to process a high-frequency (HF) lead-free linear array. Piezoelectric plates with (110)pc cut within 1° accuracy were used to manufacture two 1-3 piezo-composites with thicknesses of 270 and [Formula: see text] for resonant frequencies in air of 10 and 30 MHz, respectively. The electromechanical characterization of the BCTZ crystal plates and the 10-MHz piezocomposite yielded the thickness coupling factors of 40% and 50%, respectively. We quantified the electromechanical performance of the second piezocomposite (30 MHz) according to the reduction in the pillar sizes during the fabrication process. The dimensions of the piezocomposite at 30 MHz were sufficient for a 128-element array with a 70- [Formula: see text] element pitch and a 1.5-mm elevation aperture. The transducer stack (backing, matching layers, lens, and electrical components) was tuned with the characteristics of the lead-free materials to deliver optimal bandwidth and sensitivity. The probe was connected to a real-time HF 128-channel echographic system for acoustic characterization (electroacoustic response and radiation pattern) and to acquire high-resolution in vivo images of human skin. The center frequency of the experimental probe was 20 MHz, and the fractional bandwidth at -6 dB was 41%. Skin images were compared against those obtained with a lead-based 20-MHz commercial imaging probe. Despite significant differences in sensitivity between elements, in vivo images obtained with a BCTZ-based probe convincingly demonstrated the potential of integrating this piezoelectric material in an imaging probe.

2.
J Acoust Soc Am ; 149(5): 3122, 2021 May.
Article in English | MEDLINE | ID: mdl-34241119

ABSTRACT

1-3 piezocomposites are first choice materials for integration in ultrasonic transducers due to their high electromechanical performance, particularly, in their thickness mode. The determination of a complete set of effective electroelastic parameters through a homogenization scheme is of primary importance for their consideration as homogeneous. This allows for the simplification of the transducer design using numerical methods. The method proposed is based on acoustic wave propagation through an infinite piezocomposite, which is considered to be homogeneous material. Christoffel tensor components for the 2 mm symmetry were expressed to deduce slowness curves in several planes. Simultaneously, slowness curves of a numerical phantom were obtained using a finite element method (FEM). Dispersive curves were initially calculated in the corresponding heterogeneous structure. The subsequent identification of the effective parameters was based on a fitting process between the two sets of slowness curves. Then, homogenized coefficients were compared with reference results from a numerical method based on a fast Fourier transform for heterogeneous periodic piezoelectric materials in the quasi-static regime. A relative error of less than 2% for a very large majority of effective coefficients was obtained. As the aim of this paper is to implement an experimental procedure based on the proposed homogenization scheme to determine the effective parameters of the material in operating conditions, it is shown that simplifications to the procedure can be performed and a careful selection of only seven slowness directions is sufficient to obtain the complete database for a piezocomposite containing square-shaped fibers. Finally, further considerations to adapt the present work to a 1-3 piezocomposite with a fixed thickness are also presented.

3.
Article in English | MEDLINE | ID: mdl-30762543

ABSTRACT

A new model for piezoelectric textured ceramics was developed that considers the presence of porosity, which can appear during heat treatment (ceramic sintering). In the long wavelength approximation, a matrix method, which has already been applied to piezoelectric composites, was extended to textured ceramics for three phases [porosity (air), piezoelectric single-crystal (related to the texturation degree), and ceramic] to calculate the effective electroelastic modulus. This method was first compared and validated with finite-element calculations. A computation was applied to two systems with lead-based (PMN-PT) and lead-free (KNN) compositions. The results showed that the introduction of porosity in the whole material promotes electromechanical performance, particularly the electromechanical coupling factor kt , while limiting the degree of texturation. As an example, for the chosen PMN-PT system, an equivalent kt factor of 60% can be obtained with 1% porosity and an 85% single-crystal volume fraction or with 16% porosity and a 40% single-crystal volume fraction. According to the database used, this tradeoff is different. With the chosen lead-free composition, the degree of texture is less important than in the lead-based composition. Consequently, the porosity content is of primary importance for significantly improving the electromechanical coupling factor kt .

SELECTION OF CITATIONS
SEARCH DETAIL
...