Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Langmuir ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803109

ABSTRACT

Polyoxometalates (POMs) interact with various biologically relevant entities. A basic understanding of this interaction is very important for various applications in the biological field. In this work, the focus is on the study of the interaction between tetronics and Keggin POMs. T701 and T90R4 are the two tetronics considered here; they have different solubilities in water due to different PPO/PEO ratios. The arrangement of PPO and PEO is also different with respect to the central ethylenediamine groups. Three different Keggin-type POMs, phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and silicotungstic acid (STA), with different charge densities are chosen for an elaborate investigation using Langmuir-Blodgett technique. The observation is analyzed thoroughly, which shows both electrostatic interaction and adsorption of POMs on the PPO blocks of the tetronics due to the chaotropic effect, which is responsible for the binding of POMs (in subphase) with the tetronic monolayer. This interaction results in an expanded yet rigid monolayer for POM-tetronic association on the surface. Surface pressure vs mean molecular area isotherm is the key characterization to reach the conclusion. UV-vis spectroscopy, NMR, ITC, ellipsometric studies, FTIR, and SEM also serve as supportive characterization techniques.

2.
Nanotechnology ; 31(39): 395605, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32438351

ABSTRACT

Cu nanoparticles were prepared in an aqueous phase by means of a simple reduction-route using sodium borohydride as the reducing agent in the presence of ascorbic acid and polyvinylpyrrolidone (PVP). The hydrosol of the Cu nanoparticles deteriorated within a day. It compelled to initiate a scheme to stabilize the nanoparticles for a long period of time. Phase transfer to organic solvents using Benzyldimethylstearylammonium chloride (BDSAC) as a phase transfer agent was found to be an effective path in this respect. BDSAC performed the dual role of dragging the Cu nanoparticles from water to organic solvent and also acted as a capping agent along with PVP for better stabilization of Cu nanoparticles. The organosol of the Cu nanoparticles exhibited excellent stability and promising catalytic activity towards N-formylation reactions on a number of amine substrates in presence of visible green LED light. The yield and reusability of the catalyst were promising. All the samples were thoroughly characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive analysis of x-rays, x-ray photoelectron spectroscopy and thermo gravimetric analysis.

3.
Langmuir ; 34(38): 11602-11611, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30173524

ABSTRACT

Organization and distribution of lipids in cellular membranes play an important role in a diverse range of biological processes, such as membrane trafficking and signaling. Here, we present the combined experimental and simulated results to elucidate the phase behavioral features of ganglioside monosialo 1 (GM1)-containing mixed monolayer of the lipids 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) and cholesterol (CHOL). Two monolayers having compositions DMPC-CHOL and GM1-DMPC-CHOL are investigated at air-water and air-solid interfaces using Langmuir-Blodgett experiments and scanning electron microscopy (SEM), respectively, to ascertain the phase behavior change of the monolayers. Surface pressure isotherms and SEM imaging of domain formation indicate that addition of GM1 to the monolayer at low surface pressure causes a fluidization of the system but once the system attains the surface pressure corresponding to its liquid-condensed phase, the monolayer becomes more ordered than the system devoid of GM1 and interacts among each other more cooperatively. Besides, the condensing effect of cholesterol on the DMPC monolayer was also verified by our experiments. Apart from these, the effects induced by GM1 on the phase behavior of the binary mixture of DMPC-CHOL were studied with and without applying liquid-expanded (LE)-liquid-condensed (LC) equilibrium surface pressure using molecular dynamics (MD) simulation. Our molecular dynamics (MD) simulation results give an atomistic-level explanation of our experimental findings and furnish a similar conclusion.


Subject(s)
Cholesterol/chemistry , Dimyristoylphosphatidylcholine/chemistry , G(M1) Ganglioside/chemistry , Membranes, Artificial , Animals , Diffusion , G(M1) Ganglioside/isolation & purification , Goats , Membrane Microdomains/chemistry , Molecular Dynamics Simulation , Phase Transition , Pressure
4.
J Colloid Interface Sci ; 356(2): 395-403, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21315368

ABSTRACT

Titania-silver (TiO(2)-Ag) and alumina-silver (Al(2)O(3)-Ag) composite nanoparticles were synthesised by a simple, reproducible, wet chemical method under ambient conditions. The surface of the oxides was modified with oleic acid, which acted as an intermediate between the oxide surface and the silver nanoparticles. The resulting composite nanoparticles were thoroughly characterised by XRD, TEM, XPS, FTIR and TGA to elucidate the mode of assembly of Ag nanoparticles on the oxide surfaces. Epoxy nanocomposites were formulated with TiO(2)-Ag and Al(2)O(3)-Ag to examine potential applications for the composite nanoparticles. Preliminary results from disc diffusion assays against Escherichia coli DH5α and Staphylococcus epidermidis NCIMB 12721 suggest that these TiO(2)-Ag and Al(2)O(3)-Ag composite nanoparticles have potential as antimicrobial materials.


Subject(s)
Aluminum Oxide/chemistry , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Silver/chemistry , Titanium/chemistry , Aluminum Oxide/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli Infections/drug therapy , Humans , Nanoparticles/ultrastructure , Silver/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcus epidermidis/drug effects , Titanium/pharmacology
5.
Nanotechnology ; 20(41): 415603, 2009 Oct 14.
Article in English | MEDLINE | ID: mdl-19762940

ABSTRACT

This paper presents a facile method for decreasing the size of water dispersible Ni nanoparticles from 30 to 3 nm by the incorporation of a passivating surfactant combination of pluronic triblock copolymer and oleic acid into a wet chemical reduction synthesis. A detailed study revealed that the size of the Ni nanoparticles is not only critically governed by the concentration of the triblock copolymers but also dependent on the hydrophobic nature of the micelle core formed. The synthesized Ni nanoparticles were thoroughly characterized by means of transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and temperature and field dependent magnetic measurements, along with a comprehensive Fourier transform infrared spectroscopy analysis, in order to predict a possible mechanism of formation.


Subject(s)
Magnetics , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Nanotechnology/methods , Nickel/chemistry , Polymers/chemistry , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
6.
Small ; 5(12): 1467-73, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19296564

ABSTRACT

A facile method for the synthesis of porous platinum nanoparticles by transmetallation reactions between sacrificial nickel nanoparticles and chloroplatinic acid (H(2)PtCl(6)) in solution, as well as at the constrained environment of the air-water interface, using a Langmuir-Blodgett instrumental setup is presented. To carry out the transmetallation at the air-water interface hydrophobized nickel nanoparticles are assembled as a monolayer on the sub phase containing platinum ions. The porous Pt nanoparticles obtained as a result of the reaction are found to act as extremely good catalysts for hydrogenation reaction. The products are well characterized by TEM, HRTEM, EDAX, and STEM. Attempts are made to postulate the plausible mechanism of this reaction to generate this kind of nanoparticle with controllable geometric shape and structure. This simple strategy has the potential to synthesize other nanomaterials of interest too.


Subject(s)
Metal Nanoparticles/chemistry , Models, Chemical , Platinum/chemistry , Catalysis , Hydrogenation , Hydrophobic and Hydrophilic Interactions , Metal Nanoparticles/ultrastructure , Nickel/chemistry , Nitrobenzenes/chemistry , Porosity , Solutions
7.
J Nanosci Nanotechnol ; 7(9): 3134-9, 2007 Sep.
Article in English | MEDLINE | ID: mdl-18019139

ABSTRACT

The change in the line widths in the ferromagnetic resonance (FMR) spectra of Co and Ni nanoparticles upon shell formation with noble metals like gold or silver are described. The Ni(core)Ag(shell), Co(core)Ag(shell), and CO(core)Au(shell) nanoparticles were prepared by a simple transmetallation reaction between the Co and Ni nanoparticles and the Ag+ or AuCl4- ions. It is revealed that the FMR line width decreases upon Ag shell formation whereas it increases upon core-shell composite formation with Au. Several probable explanations such as the differences in size distributions before and after the reaction or the changes occurring in shape anisotropy of the particles due to the shell formation or the different extents of electronic interaction between the core and shell materials have been offered for this observation.


Subject(s)
Iron/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/methods , Anisotropy , Cobalt/chemistry , Electrochemistry , Gold/chemistry , Macromolecular Substances , Magnetics , Microscopy, Electron, Transmission , Models, Chemical , Nickel/chemistry , Surface Properties , Temperature
8.
J Phys Chem A ; 111(28): 6183-90, 2007 Jul 19.
Article in English | MEDLINE | ID: mdl-17585841

ABSTRACT

The binding strength of the carboxylic acid group (-COOH) with different divalent metal ions displays considerable variation in arachidic acid (AA) thin films. It is considered that in AA thin films the metal ions straddle the hydrophilic regions of the stacked bilayers of AA molecules via formation of carboxylates. In this study first the uptake of different divalent cations in films of AA is estimated by atomic absorption spectroscopy (AAS). Through the amount of cation uptake, it is found that the strength of binding of different cations varies as Ca2+>Co2+>Pb2+>Cd2+. Variation in the binding strength of different ions is also manifested in experiments where AA thin films are exposed to metal ion mixtures. The higher binding strength of AA with certain metal ions when exposed individually, as well as the preference over the other metal ions when exposed to mixtures, reveal some interesting deviation from the expected behavior based on considerations of ionic radii. For example, Pb2+ is always found to bind to AA much more strongly than Cd2+ even though the latter has smaller ionic radius, indicating that other factors also play an important role in governing the binding strength trends apart from the effects of ionic radii. Then, to get a more meaningful knowledge regarding the binding capability, first-principles calculations based on density functional theory have been applied to study the interaction of different cations with the simplest carboxylic acid, acetic acid, that can result in formation of metal diacetates. Their electronic and molecular structures, cohesive energies, and stiffness of the local potential energy well at the cation (M) site are determined and attempts are made to understand the diversity in geometry and the properties of binding of different metal ions with -COOH group. We find that the calculated M-O bond energies depend sensitively on the chemistry of M atom and follow the experimentally observed trends quite accurately. The trends in M-O bond energies and hence the total M-acetate binding energy trends can actually be related to their molecular structures that fall into different categories: Ca and Cd have tetrahedral coordination; Fe, Ni, and Co exhibit planar 4-fold coordination; and Pb is off-centered from the planar structure (forming pyramidal structure) due to its stereochemically active lone pair of electrons.


Subject(s)
Carboxylic Acids/chemistry , Eicosanoic Acids/chemistry , Metals, Heavy/chemistry , Cations, Divalent/chemistry , Energy Transfer , Models, Molecular , Quantum Theory
9.
J Nanosci Nanotechnol ; 6(12): 3736-45, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17256323

ABSTRACT

Development of simple and efficient protocol for the synthesis of Ni nanoparticles in aqueous media and their subsequent phase transfer to organic media is reported. The synthesis of nickel nanoparticles in aqueous medium is accomplished by reducing the nickel nitrate with sodium borohydride in presence of oleic acid. It results in the formation of nickel nanoparticles capped with oleic acid. The pristine oleic acid capped nickel nanoparticles were then phase transferred to nonpolar solvents such as toluene using stearic acid. The phase transfer was effective probably due to the space exchange between the oleic acid moiety and stearic acid molecules. The hydrophobized Ni thus obtained was organized at the air-water interface and it was observed that by controlling the pressure and concentration of hydrophobized Ni nanoparticles at air-water interface, linear ribbon like assemblies could be obtained. The organization process was followed by surface pressure-area isotherm measurement and Brewster Angle Microscopy.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Nickel/chemistry , Air , Macromolecular Substances/chemistry , Magnetics , Materials Testing , Molecular Conformation , Particle Size , Phase Transition , Surface Properties , Water/chemistry
10.
Langmuir ; 21(23): 10638-43, 2005 Nov 08.
Article in English | MEDLINE | ID: mdl-16262331

ABSTRACT

An easy and convenient method for the synthesis of cobalt and magnesium ferrite nanoparticles is demonstrated using liquid foams as templates. The foam is formed from an aqueous mixture of an anionic surfactant and the desired metal ions, where the metal ions are electrostatically entrapped by the surfactant at the thin borders between the foam bubbles and their junctions. The hydrolysis is carried out using alkali resulting in the formation of desired nanoparticles, with the foam playing the role of a template. However, in the formation of ferrites with the formula MFe(2)O(4), where the metal ion and iron possess oxidation states of +2 and +3, respectively, forming a foam from a 1:2 mixture of the desired ionic solutions would lead to a foam composition at variance with the original solution mixture because of greater electrostatic binding of ions possessing a greater charge with the surfactant. In our procedure, we circumvent this problem by preparing the foam from a 1:2 mixture of M(2+) and Fe(2+) ions and then utilizing the in situ conversion of Fe(2+) to Fe(3+) under basic conditions inside the foam matrix to get the desired composition of the metal ions with the required oxidation states. The fact that we could prepare both CoFe(2)O(4) and MgFe(2)O(4) particles shows the vast scope of this method for making even multicomponent oxides. The magnetic nanoparticles thus obtained exhibit a good crystalline nature and are characterized by superparamagnetic properties. The magnetic features observed for CoFe(2)O(4) and MgFe(2)O(4) nanoparticles are well in accordance with the expected behaviors, with CoFe(2)O(4) particles showing higher blocking temperatures and larger coercivities. These features can easily be explained by the contribution of Co(2+) sites to the magnetocrystalline anisotropy and the absence of the same from the Mg(2+) ions.

11.
J Colloid Interface Sci ; 283(2): 422-31, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15721914

ABSTRACT

The phase transfer protocols in vogue for the oleic acid capped silver nanoparticles, viz., salt-induced precipitation and redispersion or phosphoric acid-induced method, are examined and compared thoroughly. A comprehensive evaluation with respect to the mechanistic aspects involved is made and the merits and demerits of the different procedures are delineated. It is found that the salt-induced precipitation and redispersion is more versatile in that the precipitate can actually be redispersed in both aqueous and organic media. However, in terms of mechanism both the routes seem to be very similar wherein the orientational change of oleic acid on the silver surface in the two different environments-organic and aqueous-plays a crucial role in the adaptability of the system to the different environments. Subsequently, this change of orientation of oleic acid on silver surface in aqueous and organic media has been utilized to phase transfer Ni-based nanoparticulate systems. The nascent oleic acid-capped Ni nanoparticles, which were synthesized by a foam-based protocol, were dispersible in water but not in nonpolar organic media such as cyclohexane or toluene. Then, just by coating a thin shell of silver on them we could achieve complete phase transfer of the Ni(core)Ag(shell) from aqueous to organic media following similar procedures used for oleic acid-capped silver nanoparticles. Here, the phase transfer seems to be facilitated by the orientational flexibility of oleic acid on the silver surface as opposed to other metal surfaces as evidenced from the infrared and thermogravimetric analyses of oleic acid-capped Ni and Ni(core)Ag(shell) nanoparticles. This orientation-assisted phase transfer method could be generalized and can be adapted to other systems where, if the nascent nanoparticles cannot be phase transferred as is, they can be coated by a silver shell and oleic acid making them suitable for dispersion in both aqueous and organic media.

12.
Langmuir ; 21(3): 822-6, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15667154

ABSTRACT

A simple and efficient way of obtaining silver nanoparticles that are dispersible both in organic and in aqueous solvents using a single capping agent is described. The silver nanoparticles are initially prepared in water in the presence of aerosol OT [sodium bis(2-ethylhexyl)-sulfosuccinate, AOT]. Thereafter, transfer of the AOT-capped silver nanoparticles to an organic phase is induced by the addition of a small amount of orthophosphoric acid during shaking of the biphasic mixture. The AOT-stabilized silver nanoparticles could be separated out from the organic phase in the form of a powder. The hydrophobic nanoparticles thus prepared are stable and are readily resuspended in a variety of other polar (including water) and nonpolar solvents without further surface treatment. The amphiphatic nature of the silver surface is brought about by a small orientational change in the AOT monolayer on the silver surface in response to the polarity of the solvent.

SELECTION OF CITATIONS
SEARCH DETAIL
...