Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 56(9): 4864-4873, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28406618

ABSTRACT

Five heteroleptic lanthanide porphyrin-bis-phthalocyanine triple-decker complexes with bulky peripheral groups were prepared via microwave-assisted synthesis and characterized in terms of their spectroscopic, electrochemical, and magnetic properties. These compounds, which were easily obtained under our preparative conditions, would normally not be accessible in large quantities using conventional synthetic methods, as a result of the low yield resulting from steric congestion of bulky groups on the periphery of the phthalocyanine and porphyrin ligands. The electrochemically investigated triple-decker derivatives undergo four reversible one-electron oxidations and three reversible one-electron reductions. The sites of oxidation and reduction were assigned on the basis of redox potentials and UV-vis spectral changes during electron-transfer processes monitored by thin-layer spectroelectrochemistry, in conjunction with assignments of electronic absorption bands of the neutral compounds. Magnetic susceptibility measurements on two derivatives containing TbIII and DyIII metal ions reveal the presence of ferromagnetic interactions, probably resulting from magnetic dipolar interactions. The TbIII derivative shows SMM behavior under an applied field of 0.1 T, where the direct and Orbach process can be determined, resulting in an energy barrier of Ueff = 132.0 K. However, Cole-Cole plots reveal the presence of two relaxation processes, the second of which takes place at higher frequencies, with the data conforming to a 1/t ∝ T7 relation, thus suggesting that it can be assigned to a Raman process. Attempts were made to form two-dimensional (2D) self-assembled networks on a highly oriented pyrolytic graphite (HOPG) surface but were unsuccessful due to bulky peripheral groups on the two Pc macrocycles.

2.
Nat Commun ; 7: 12657, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27582363

ABSTRACT

Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.

3.
Nat Commun ; 7: 11844, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27296868

ABSTRACT

Laser writing is used to structure surfaces in many different ways in materials and life sciences. However, combinatorial patterning applications are still limited. Here we present a method for cost-efficient combinatorial synthesis of very-high-density peptide arrays with natural and synthetic monomers. A laser automatically transfers nanometre-thin solid material spots from different donor slides to an acceptor. Each donor bears a thin polymer film, embedding one type of monomer. Coupling occurs in a separate heating step, where the matrix becomes viscous and building blocks diffuse and couple to the acceptor surface. Furthermore, we can consecutively deposit two material layers of activation reagents and amino acids. Subsequent heat-induced mixing facilitates an in situ activation and coupling of the monomers. This allows us to incorporate building blocks with click chemistry compatibility or a large variety of commercially available non-activated, for example, posttranslationally modified building blocks into the array's peptides with >17,000 spots per cm(2).


Subject(s)
Combinatorial Chemistry Techniques , Oligopeptides/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Carbodiimides/chemistry , Fluorenes/chemistry , Hemagglutinins/chemistry , Hydroxybenzoate Ethers/chemistry , Lasers , Methacrylates/chemistry , Oligopeptides/chemistry , Polyethylene Glycols/chemistry
4.
Chemistry ; 22(28): 9740-9, 2016 Jul 04.
Article in English | MEDLINE | ID: mdl-27238461

ABSTRACT

The J aggregates of 4-sulfonatophenyl meso-substituted porphyrins are non-covalent polymers obtained by self-assembly that form nanoparticles of different morphologies. In the case of high aspect-ratio nanoparticles (bilayered ribbons and monolayered nanotubes), shear hydrodynamic forces may modify their shape and size, as observed by peak force microscopy, transmission electron microscopy of frozen solutions, small-angle X-ray scattering measurements in a disk-plate rotational cell, and cone-plate rotational viscometry. These nanoparticles either show elastic or plastic behaviour: there is plasticity in the ribbons obtained upon nanotube collapse on solid/air interfaces and in viscous concentrated nanotube solutions, whereas elasticity occurs in the case of dilute nanotube solutions. Sonication and strong shear hydrodynamic forces lead to the breaking of the monolayered nanotubes into small particles, which then associate into large colloidal particles.

5.
Langmuir ; 32(16): 4034-42, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27027411

ABSTRACT

Scanning probe lithography (SPL) appears to be a reliable alternative to the use of masks in traditional lithography techniques as it offers the possibility of directly producing specific chemical functionalities with nanoscale spatial control. We have recently extend the range of applications of catalytic SPL (cSPL) by introducing a homogeneous catalyst immobilized on the apex of a scanning probe. Here we investigate the importance of atomic force microscopy (AFM) physical parameters (applied force, writing speed, and interline distance) on the resultant chemical activity in this cSPL methodology through the direct topographic observation of nanostructured surfaces. Indeed, an alkene-terminated self-assembled monolayer (alkene-SAM) on a silicon wafer was locally epoxidized using a scanning probe tip with a covalently grafted manganese complex bearing the 1,4,7-triazacyclononane macrocycle as the ligand. In a post-transformation process, N-octylpiperazine was covalently grafted to the surface via a selective nucleophilic ring-opening reaction. With this procedure, we could write various patterns on the surface with high spatial control. The catalytic AFM probe thus appears to be very robust because a total area close to 500 µm(2) was patterned without any noticeable loss of catalytic activity. Finally, this methodology allowed us to reach a lower lateral line resolution down to 40 nm, thus being competitive and complementary to the other nanolithographical techniques for the nanostructuration of surfaces.

6.
Chem Commun (Camb) ; 51(59): 11884-7, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26112252

ABSTRACT

We synthesized a series of biomimetic self-assembling phthalocyanines equipped with carbonyl groups as recognition motifs, a central zinc atom and diverse solubilizing alkyl chains mimicking for the first time with these robust pigments the natural chlorosomal bacteriochlorophylls. Upon self-assembly a very broad and red-shifted Q-band absorption extending to over 900 nm is put into evidence.


Subject(s)
Biomimetic Materials/chemical synthesis , Indoles/chemistry , Organometallic Compounds/chemical synthesis , Zinc/chemistry , Biomimetic Materials/chemistry , Molecular Structure , Organometallic Compounds/chemistry
7.
Chemistry ; 21(21): 7760-71, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25786789

ABSTRACT

The introduction of ester groups on the 5- and 15-meso positions of corroles stabilizes them against oxidation and induces a redshift of their absorption and emission spectra. These effects are studied through the photophysical and electrochemical characterization of up to 16 different 5,15-diester corroles, in which the third meso position is free or occupied by an aryl group, a long alkyl chain, or an ester moiety. Single-crystal X-ray structure analysis of five 5,15-diestercorroles and DFT and time-dependent DFT calculations show that the strong electron-withdrawing character of the 5,15 ester substituents is reinforced by their π overlap with the macrocyclic aromatic system. The crystal packing of corroles 2, 4, 6, 9, and 15 features short distances between chromophores that are stacked into columns thanks to the low steric hindrance of meso-ester groups. This close packing is partially due to intermolecular interactions that involve inner hydrogen and nitrogen atoms, and thereby, stabilize a single, identical corrole tautomeric form.

8.
Chemistry ; 21(4): 1488-98, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25417808

ABSTRACT

We have developed new conditions that afford regioisomerically pure trans-A2B2-, A3B-, and trans-AB2C-porphyrins bearing aryl and arylethynyl substituents. The porphyrins were prepared by the acid-catalyzed condensation of dipyrromethanes with aldehydes followed by oxidation with p-chloranil or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Optimal conditions for the condensation were identified after examining various reaction parameters such as solvent composition, acid concentration, and reaction time. The conditions identified (for aromatic aldehydes: EtOH/H2O 4:1, [DPM] = 4 mM, [aldehyde] = 4 mM, [HCl] = 38 mM, 16 h; for arylethynyl aldehydes: THF/H2O 2:1, [DPM] = 13 mM, [aldehyde] = 13 mM, [HCl] = 150 mM, 3 h) resulted in the formation of porphyrins in yields of 9-38% without detectable scrambling. This synthesis is compatible with diverse functionalities such as ester or nitrile. In total, 20 new trans-A2B2-, A3B-, and trans-AB2C-porphyrins were prepared. The scope and limitations of the two sets of reaction conditions have been explored. The methodological advantage of this approach is its straightforward access to building blocks and the formation of the porphyrin core in higher yields than by any other methodology and by using environmentally benign and nonhazardous chemicals.


Subject(s)
Porphyrins/chemical synthesis , Aldehydes/chemistry , Benzoquinones/chemistry , Green Chemistry Technology , Oxidation-Reduction , Porphyrins/chemistry , Pyrroles/chemistry , Water/chemistry
9.
Phys Chem Chem Phys ; 16(31): 16755-64, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24999619

ABSTRACT

Bacteriochlorophyll (BChl) c is the main light-harvesting pigment of certain photosynthetic bacteria. It is found in the form of self-assembled aggregates in the so-called chlorosomes. Here we report the results of co-aggregation experiments of BChl c with azulene and its tailored derivatives. We have performed spectroscopic and quantum chemical characterization of the azulenes, followed by self-assembly experiments. The results show that only azulenes with sufficient hydrophobicity are able to induce aggregation of BChl c. Interestingly, only azulene derivatives possessing a conjugated phenyl ring were capable of efficient (∼50%) excitation energy transfer to BChl molecules. These aggregates represent an artificial light-harvesting complex with enhanced absorption between 220 and 350 nm compared to aggregates of pure BChl c. The results provide insight into the principles of self-assembly of BChl aggregates and suggest an important role of the π-π interactions in efficient energy transfer.


Subject(s)
Azulenes/chemistry , Bacterial Proteins/chemistry , Bacteriochlorophylls/chemistry , Energy Transfer
10.
Chemphyschem ; 14(14): 3209-14, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23908093

ABSTRACT

A widely studied achiral porphyrin, which is highly soluble in aqueous solutions (TPPS4), is shown to self-assemble into helical nanotubes. These were imaged by electron cryo-microscopy and a state-of-the-art image analysis allows building a map at ∼5 Šresolution, one of the highest obtained so far for molecular materials. The authors were able to trace the apparent symmetry breaking to existing nuclei in the "as received samples", while carefully purified samples show that both handnesses occur in equal amounts.


Subject(s)
Cryoelectron Microscopy/methods , Porphyrins/chemistry , Hydrogen-Ion Concentration , Nanotubes/chemistry , Solutions/chemistry
11.
Chemistry ; 19(34): 11293-300, 2013 Aug 19.
Article in English | MEDLINE | ID: mdl-23839774

ABSTRACT

We have developed a high-yielding synthesis of meso-tetraalkylporphyrins, which previously have been obtained only in lower yields. By employing Montmorrilonite K10 as the acid catalyst and 3 Šmolecular sieves as the dehydrating agent, yields that reached 70 % could be achieved with some aliphatic aldehydes. The free-base porphyrins with decyl (C10) or longer chains were imaged at the single-molecule level at the solvent/surface interface. Highly oriented pyrolytic graphite (HOPG) was used as a π-stacking surface, whereas 1-phenyloctane and 1-phenylnonane were used as solvents. An odd-even effect was observed from C13 to C16. For C13 a single-crystal X-ray structure allowed an unprecedented insight into how packing from two dimensions is expanded into a three-dimensional crystal lattice.

12.
Chempluschem ; 78(10): 1244-1251, 2013 Oct.
Article in English | MEDLINE | ID: mdl-31986778

ABSTRACT

Studying the relaxation pathways of porphyrins and related structures upon light absorption is crucial to understand the fundamental processes of light harvesting in biosystems and many applications. Herein, we show by means of transient absorption studies, following Q- and Soret-band excitation, and ab initio calculations on meso-tetraphenylporphyrinato magnesium(II) (MgTPP) and meso-tetraphenylporphyrinato cadmium(II) (CdTPP) that electronic relaxation following Soret-band excitation of porphyrins with a heavy central atom is mediated by a hitherto disregarded dark state. This accounts for an increased rate of internal conversion. The dark state originates from an orbital localized at the central nitrogen atoms and its energy continuously decreases along the series from magnesium to zinc to cadmium to below 2.75 eV for CdTPP dissolved in tetrahydrofuran. Furthermore, we are able to directly trace fast intersystem crossing in the cadmium derivative, which takes place within (110±20) ps.

13.
Photochem Photobiol Sci ; 11(6): 1069-80, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22522667

ABSTRACT

Semisynthetic zinc chlorins are shown for the first time to self-assemble in the absence of an intrinsic hydroxy group, which is always present in the chlorosomal bacteriochlorophylls (BChl's) c, d and e. Instead, the presently studied compounds have carbonyl groups. These cannot function as hydrogen bond donating groups. However due to interspacing water molecules bound to the zinc ion, double hydrogen bonding can occur to adjacent tetrapyrrolic macrocycles equipped with carbonyl recognition groups. Solution studies comprising UV-Vis absorption, electronic circular dichroism (ECD) and FT-IR show that different aggregates are formed in hydrated solvents in comparison to dry nonpolar solvents. Single crystal X-ray studies show variable supramolecular interactions either with interspacing water molecules coordinating the Zn ion within a porphyrin or with the 17(2) carbonyl group of a chlorin ligating the Zn ion. Our findings have implications for a minimalistic design of self-assembling chromophores, which can act as efficient light-harvesting units.


Subject(s)
Metalloporphyrins/chemistry , Porphyrins/chemistry , Water/chemistry , Bacteriochlorophylls/chemistry , Bacteriochlorophylls/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Crystallography, X-Ray , Hydrogen Bonding , Metalloporphyrins/chemical synthesis , Molecular Conformation
14.
J Am Chem Soc ; 134(2): 944-54, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22148684

ABSTRACT

Being able to control in time and space the positioning, orientation, movement, and sense of rotation of nano- to microscale objects is currently an active research area in nanoscience, having diverse nanotechnological applications. In this paper, we demonstrate unprecedented control and maneuvering of rod-shaped or tubular nanostructures with high aspect ratios which are formed by self-assembling synthetic porphyrins. The self-assembly algorithm, encoded by appended chemical-recognition groups on the periphery of these porphyrins, is the same as the one operating for chlorosomal bacteriochlorophylls (BChl's). Chlorosomes, rod-shaped organelles with relatively long-range molecular order, are the most efficient naturally occurring light-harvesting systems. They are used by green photosynthetic bacteria to trap visible and infrared light of minute intensities even at great depths, e.g., 100 m below water surface or in volcanic vents in the absence of solar radiation. In contrast to most other natural light-harvesting systems, the chlorosomal antennae are devoid of a protein scaffold to orient the BChl's; thus, they are an attractive goal for mimicry by synthetic chemists, who are able to engineer more robust chromophores to self-assemble. Functional devices with environmentally friendly chromophores-which should be able to act as photosensitizers within hybrid solar cells, leading to high photon-to-current conversion efficiencies even under low illumination conditions-have yet to be fabricated. The orderly manner in which the BChl's and their synthetic counterparts self-assemble imparts strong diamagnetic and optical anisotropies and flow/shear characteristics to their nanostructured assemblies, allowing them to be manipulated by electrical, magnetic, or tribomechanical forces.


Subject(s)
Light-Harvesting Protein Complexes/chemical synthesis , Porphyrins/chemical synthesis , Anisotropy , Bacteriochlorophylls/chemistry , Circular Dichroism , Membranes, Artificial , Microscopy, Electron, Scanning , Models, Molecular , Molecular Structure
15.
Inorg Chem ; 50(13): 6073-82, 2011 Jul 04.
Article in English | MEDLINE | ID: mdl-21648433

ABSTRACT

An efficient noncovalent assembly process involving high geometrical control was applied to a linear bis(imidazolyl zinc porphyrin) 7Zn, bearing C(18) substitutents, to generate linear multiporphyrin wires. The association process is based on imidazole recognition within the cavity of the phenanthroline-strapped zinc porphyrin. In chlorinated solvents, discrete soluble oligomers were obtained after (7Zn)(n) was end-capped with a terminal single imidazolyl zinc porphyrin derivative 4Zn. These soluble species, as well as their destabilization in the presence of protic solvents, were studied by UV-visible and time-resolved luminescence. In the solid state, assemblies as long as 480 nm, which corresponds to 190 iterative units or a total of 380 porphyrins, were observed by atomic force microscopy measurements on mica. The length and linearity of the porphyrin wires obtained illustrate the potential of phenanthroline-strapped porphyrins for the directional control of self-assembly processes.

16.
J Phys Chem B ; 114(50): 16718-22, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21114251

ABSTRACT

By using a simple anthracene derivative with four alkoxy tails, a two-dimensional patterned surface was fabricated. The two-dimensional structures were directly visualized by scanning tunneling microscopy (STM) at the solid/liquid interface. The anthracene derivative formed highly ordered structures displaying cavities into which solvent molecules of 1-phenyloctane were coadsorbed. The functionality of the patterned surface was demonstrated by activating host-guest chemistry as the solvent molecules could be replaced by coronene, whose size is almost identical to the cavities formed by the anthracene derivative. Furthermore, [4 + 4] photodimerization of the anthracene derivative was performed at the solid/liquid interface and revealed that the physical height and electron density of the states were changed, resulting in the increase of an apparent height in the STM images. We demonstrate thus that the porous network of the two-dimensional pattern created by the anthracene derivative can be applied for selectively incorporating guest molecules and for photoprocessing.

17.
J Phys Chem B ; 114(42): 13473-80, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20923224

ABSTRACT

Single-molecule microscopy is a powerful tool for investigating various uptake mechanisms of cell-penetrating biomolecules. A particularly interesting class of potential transporter molecules are peptoids. Fluorescence labels for such experiments need to comply with several physical, chemical, and biological requirements. Herein, we report the synthesis and photophysical investigation of new fluorescent pyridinium derived dyes. These fluorescent labels have advantageous structural variations and spacer units in order to avoid undesirable interactions with the labeled molecule and are able to easily functionalize biomolecules. In our case, cell-penetrating peptoids are successfully labeled on solid supports, and in ensemble measurements the photophysical properties of the dyes and the fluorescently labeled peptoids are investigated. Both fluorophores and peptoids are imaged at the single-molecule level in thin polymer gels. With respect to bleaching times and fluorescence lifetimes the dye molecules and the peptoids show only slightly perturbed optical behaviors. These investigations indicate that the new fluorophores fulfill well single-molecule microscopy and solid-phase synthesis requirements.


Subject(s)
Fluorescent Dyes/chemistry , Peptoids/chemistry , Pyridines/chemistry , Spectrometry, Fluorescence
18.
J Am Chem Soc ; 132(30): 10477-83, 2010 Aug 04.
Article in English | MEDLINE | ID: mdl-20662525

ABSTRACT

Binuclear square planar Ni(II) complexes are described, formed by two tridentate ligands with two imine-nitrogens coordinating two nickel atoms. Such complexes are synthetically readily available with great structural variety and present new types of ridge-tile-like chiral compounds that are reasonably stable in the appropriate "bent" conformation. Enantiomerically pure samples of these compounds have been obtained for the first time using HPLC with a chiral stationary phase. Absolute configurations and chiroptical properties are fully characterized by ECD, VCD, ORD spectroscopy, and theoretical calculations. These new compounds with ridge-tile-like chiral topology are configurationally reasonably stable [DeltaG(double dagger) = 121.4 kJ mol(-1), t(1/2) = 14.9 h (78 degrees C, ethanol)], and therefore their chemistry, physical properties, and applications can be systematically studied.


Subject(s)
Nickel/chemistry , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Conformation , Stereoisomerism
19.
J Am Chem Soc ; 131(40): 14480-92, 2009 Oct 14.
Article in English | MEDLINE | ID: mdl-19769331

ABSTRACT

Diacylation of copper 10,20-bis(3,5-di-tert-butylphenylporphyrin) using Friedel-Crafts conditions at short reaction times, high concentrations of catalyst, and 0-4 degrees C affords only the 3,17-diacyl-substituted porphyrins, out of the 12 possible regioisomers. At longer reaction times and higher temperatures, the 3,13-diacyl compounds are also formed, and the two isomers can be conveniently separated by normal chromatographic techniques. Monoreduction of these diketones affords in good yields the corresponding acyl(1-hydroxyalkyl)porphyrins, which after zinc metalation are mimics of the natural chlorosomal bacteriochlorophyll (BChl) d. Racemate resolution by HPLC on a variety of chiral columns was achieved and further optimized, thus permitting easy access to enantiopure porphyrins. Enantioselective reductions proved to be less effective in this respect, giving moderate yields and only 79% ee in the best case. The absolute configuration of the 3(1)-stereocenter was assigned by independent chemical and spectroscopic methods. Self-assembly of a variety of these zinc BChl d mimics proves that a collinear arrangement of the hydroxyalkyl substituent with the zinc atom and the carbonyl substituent is not a stringent requirement, since both the 3,13 and the 3,17 regioisomers self-assemble readily as the racemates. Interestingly, the separated enantiomers self-assemble less readily, as judged by absorption, fluorescence, and transmission electron microscopy studies. Circular dichroism spectra of the self-assemblies show intense Cotton effects, which are mirror-images for the two 3(1)-enantiomers, proving that the supramolecular chirality is dependent on the configuration at the 3(1)-stereocenter. Upon disruption of these self-assemblies with methanol, which competes with zinc ligation, only very weak monomeric Cotton effects are present. The favored heterochiral self-assembly process may also be encountered for the natural BChls. This touches upon the long-standing problem of why both 3(1)-epimers are encountered in BChls in ratios that vary with the illumination and culturing conditions.


Subject(s)
Bacteriochlorophylls/chemistry , Biomimetic Materials/chemical synthesis , Copper/chemistry , Metalloporphyrins/chemistry , Acetylation , Biomimetic Materials/chemistry , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy/methods , Metalloporphyrins/chemical synthesis , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Stereoisomerism
20.
J Nanosci Nanotechnol ; 9(6): 3708-13, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19504907

ABSTRACT

Artificial light-harvesting antennas consisting of self-assembled chromophores that mimic the natural pigments of photosynthetic bacteria have been inserted into voids induced in porous titania (TiO2, anatase) in order to investigate their suitability for hybrid solar cells. Mesoporous nanocrystalline TiO2 with additional uniform macropores was treated with precursor solutions of the pigment which was then induced to self-assemble within the voids. The chromophores were tailored to combine the self-assembly characteristics of the natural bacteriochlorophylls with the robustness of artificial Zn-porphyrins being stable for prolonged periods even upon heating to over 200 degrees C. They assemble on the TiO2 surface to form nano- to micro-crystalline structures with lengths from tens of nm up to several microm and show a photosensitization effect which is supposed to be dependent on the assembly size. The natural examples of these antennas are found in green sulfur bacteria which are able to use photosynthesis in deep water regions with minute light intensities. The implementation of biomimetic antennas for light harvesting and a better photon management may lead to a rise in efficiency of dye-sensitized solar cells also under low light illumination conditions.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Molecular Mimicry , Nanostructures , Solar Energy , Titanium/chemistry , Crystallization , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...