Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5368, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438434

ABSTRACT

Ultrasonic irrigation during root canal treatment can enhance biofilm disruption. The challenge is to improve the fluid flow so that the irrigant reaches areas inaccessible to hand instrumentation. The aim of this study is to experimentally investigate how the flow field and hydrodynamic forces induced by ultrasonic irrigation are influenced by the ultrasound power and file insertion depth. A root canal phantom was 3D printed and used as a mold for the fabrication of a PDMS channel. An ultrasonic instrument with a #15K-file provided the irrigation. The flow field was studied by means of Particle Image Velocimetry (PIV). The time averaged velocity and shear stress distributions were found to vary significantly with ultrasound power. Their maximum values increase sharply for low powers and up to a critical power level. At and above this setting, the flow pattern changes, from the high velocity and shear stress region confined in the vicinity of the tip, to one covering the whole root canal domain. Exceeding this threshold also induces a moderate increase in the maximum velocities and shear stresses. The insertion depth was found to have a smaller effect on the measured velocity and shear stresses. Due to the oscillating nature of the flow, instantaneous maximum velocities and shear stresses can reach much higher values than the mean, especially for high powers. Ultrasonic irrigation will benefit from using a higher power setting as this does produce greater shear stresses near the walls of the root canal leading to the potential for increased biofilm removal.


Subject(s)
Dental Pulp Cavity , Ultrasonics , Ultrasonography , Phantoms, Imaging , Biofilms
2.
J R Soc Interface ; 20(206): 20230281, 2023 09.
Article in English | MEDLINE | ID: mdl-37727072

ABSTRACT

Type-B aortic dissection is a cardiovascular disease in which a tear develops in the intimal layer of the descending aorta, allowing pressurized blood to delaminate the layers of the vessel wall. In medically managed patients, long-term aneurysmal dilatation of the false lumen (FL) is considered virtually inevitable and is associated with poorer disease outcomes. While the pathophysiological mechanisms driving FL dilatation are not yet understood, haemodynamic factors are believed to play a key role. Computational fluid dynamics (CFD) and 4D-flow MRI (4DMR) analyses have revealed correlations between flow helicity, oscillatory wall shear stress and aneurysmal dilatation of the FL. In this study, we compare CFD simulations using a patient-specific, three-dimensional, three-component inlet velocity profile (4D IVP) extracted from 4DMR data against simulations with flow rate-matched uniform and axial velocity profiles that remain widely used in the absence of 4DMR. We also evaluate the influence of measurement errors in 4DMR data by scaling the 4D IVP to the degree of imaging error detected in prior studies. We observe that oscillatory shear and helicity are highly sensitive to inlet velocity distribution and flow volume throughout the FL and conclude that the choice of IVP may greatly affect the future clinical value of simulations.


Subject(s)
Aortic Dissection , Cardiovascular Diseases , Humans , Bays , Aortic Dissection/diagnostic imaging , Hemodynamics , Hydrodynamics
3.
Ann Biomed Eng ; 51(7): 1627-1644, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36967447

ABSTRACT

Type-B aortic dissection (TBAD) is a disease in which a tear develops in the intimal layer of the descending aorta forming a true lumen and false lumen (FL). Because disease outcomes are thought to be influenced by haemodynamic quantities such as pressure and wall shear stress (WSS), their analysis via numerical simulations may provide valuable clinical insights. Major aortic branches are routinely included in simulations but minor branches are virtually always neglected, despite being implicated in TBAD progression and the development of complications. As minor branches are estimated to carry about 7-21% of cardiac output, neglecting them may affect simulation accuracy. We present the first simulation of TBAD with all pairs of intercostal, subcostal and lumbar arteries, using 4D-flow MRI (4DMR) to inform patient-specific boundary conditions. Compared to an equivalent case without minor branches, their inclusion improved agreement with 4DMR velocities, reduced time-averaged WSS (TAWSS) and transmural pressure and elevated oscillatory shear in regions where FL dilatation and calcification were observed in vivo. Minor branch inclusion resulted in differences of 60-75% in these metrics of potential clinical relevance, indicating a need to account for minor branch flow loss if simulation accuracy is sought.


Subject(s)
Aortic Dissection , Humans , Aortic Dissection/diagnostic imaging , Hemodynamics , Aorta, Abdominal , Magnetic Resonance Imaging
4.
Philos Trans A Math Phys Eng Sci ; 381(2243): 20220131, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36709781

ABSTRACT

Since the seminal work of Taylor in 1923, Taylor-Couette (TC) flow has served as a paradigm to study hydrodynamic instabilities and bifurcation phenomena. Transitions of Newtonian TC flows to inertial turbulence have been extensively studied and are well understood, while in the past few years, there has been an increasing interest in TC flows of complex, viscoelastic fluids. The transitions to elastic turbulence (ET) or elasto-inertial turbulence (EIT) have revealed fascinating dynamics and flow states; depending on the rheological properties of the fluids, a broad spectrum of transitions has been reported, including rotating standing waves, flame patterns (FP), and diwhirls (DW). The nature of these transitions and the relationship between ET and EIT are not fully understood. In this review, we discuss experimental efforts on TC flows of viscoelastic fluids. We outline the experimental methods employed and the non-dimensional parameters of interest, followed by an overview of inertia, elasticity and elasto-inertia-driven transitions to turbulence and their modulation through shear thinning or particle suspensions. The published experimental data are collated, and a map of flow transitions to EIT as a function of the key fluid parameters is provided, alongside perspectives for the future work. This article is part of the theme issue 'Taylor-Couette and related flows on the centennial of Taylor's seminal Philosophical Transactions paper (part 1)'.

5.
Morphologie ; 103(343): 148-160, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31786098

ABSTRACT

For precision medicine to be implemented through the lens of in silico technology, it is imperative that biophysical research workflows offer insight into treatments that are specific to a particular illness and to a particular subject. The boundaries of precision medicine can be extended using multiscale, biophysics-centred workflows that consider the fundamental underpinnings of the constituents of cells and tissues and their dynamic environments. Utilising numerical techniques that can capture the broad spectrum of biological flows within complex, deformable and permeable organs and tissues is of paramount importance when considering the core prerequisites of any state-of-the-art precision medicine pipeline. In this work, a succinct breakdown of two precision medicine pipelines developed within two Virtual Physiological Human (VPH) projects are given. The first workflow is targeted on the trajectory of Alzheimer's Disease, and caters for novel hypothesis testing through a multicompartmental poroelastic model which is integrated with a high throughput imaging workflow and subject-specific blood flow variability model. The second workflow gives rise to the patient specific exploration of Aortic Dissections via a multi-scale and compliant model, harnessing imaging, computational fluid-dynamics (CFD) and dynamic boundary conditions. Results relating to the first workflow include some core outputs of the multiporoelastic modelling framework, and the representation of peri-arterial swelling and peri-venous drainage solution fields. The latter solution fields were statistically analysed for a cohort of thirty-five subjects (stratified with respect to disease status, gender and activity level). The second workflow allowed for a better understanding of complex aortic dissection cases utilising both a rigid-wall model informed by minimal and clinically common datasets as well as a moving-wall model informed by rich datasets.


Subject(s)
Alzheimer Disease/physiopathology , Aortic Dissection/physiopathology , Glymphatic System/physiopathology , Models, Biological , Regional Blood Flow/physiology , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/therapy , Aortic Dissection/diagnostic imaging , Aortic Dissection/therapy , Aorta/diagnostic imaging , Aorta/physiopathology , Brain/blood supply , Brain/diagnostic imaging , Brain/physiopathology , Cohort Studies , Computer Simulation , Datasets as Topic , Female , Humans , Hydrodynamics , Male , Middle Aged , Tomography, X-Ray Computed , Workflow
6.
Med Eng Phys ; 73: 30-38, 2019 11.
Article in English | MEDLINE | ID: mdl-31416778

ABSTRACT

Blood oxygenators act as an extracorporeal artificial lung during certain types of cardiac surgery and intensive care therapies. Inside these devices, blood is forced to flow across an oxygenating bundle, encountering interstitial gaps comparable to those typical of the microvasculature. Despite the well-known effects of such length scales on haemorheology and red blood cell (RBC) behavior, these are generally overlooked in oxygenator modeling and design; it is persistently assumed that RBCs are homogeneously distributed throughout the oxygenating bundle, independently of their microstructure arrangement or main flow directions. The goal of this study is to provide preliminary experimental evidence of heterogeneous RBC distributions inside oxygenating fibre bundles. To this end, a number of microchannels were manufactured inspired by actual oxygenating devices, considering simplified versions of their microstructure. These comprise staggered arrays of micro pillars, which were perfused with RBC suspensions, with feed haematocrit (Ht) and velocities relevant for clinical use. The microchannels were imaged using a microscope and high-speed camera to accurately capture cell distribution. The imaged blood flows revealed the non-uniform nature of RBC distributions in the arrays, characterized by local Ht gradients particularly around the O2 sources inside the bundle. These heterogeneous distributions should be accounted for during oxygenator design, as RBC concentration plays a key role in O2 transport and, ultimately, overall device performance.


Subject(s)
Biomimetics/instrumentation , Erythrocytes/cytology , Erythrocytes/metabolism , Lab-On-A-Chip Devices , Oxygen/metabolism , Animals , Cattle , Hematocrit
7.
Med Eng Phys ; 48: 23-30, 2017 10.
Article in English | MEDLINE | ID: mdl-28499813

ABSTRACT

Red blood cell aggregation plays a key role in microcirculatory flows, however, little is known about the transport characteristics of red blood cell aggregates in branching geometries. This work reports on the fluxes of red blood cell aggregates of various sizes in a T-shaped microchannel, aiming to clarify the effects of different flow conditions in the outlet branches of the channel. Image analysis techniques, were utilised, and moderately aggregating human red blood cell suspensions were tested in symmetric (∼50-50%) and asymmetric flow splits through the two outlet (daughter) branches. The results revealed that the flux decreases with aggregate size in the inlet (parent) and daughter branches, mainly due to the fact that the number of larger structures is significantly smaller than that of smaller structures. However, when the flux in the daughter branches is examined relative to the aggregate size flux in the parent branch an increase with aggregate size is observed for a range of asymmetric flow splits. This increase is attributed to size distribution and local concentration changes in the daughter branches. The results show that the flow of larger aggregates is not suppressed downstream of a bifurcation, and that blood flow is maintained, for physiological levels of red blood cell aggregation.


Subject(s)
Erythrocyte Aggregation , Lab-On-A-Chip Devices , Humans , Kinetics
8.
Sci Rep ; 7: 44563, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28303921

ABSTRACT

Microvascular flows are often considered to be free of red blood cell aggregates, however, recent studies have demonstrated that aggregates are present throughout the microvasculature, affecting cell distribution and blood perfusion. This work reports on the spatial distribution of red blood cell aggregates in a T-shaped bifurcation on the scale of a large microvessel. Non-aggregating and aggregating human red blood cell suspensions were studied for a range of flow splits in the daughter branches of the bifurcation. Aggregate sizes were determined using image processing. The mean aggregate size was marginally increased in the daughter branches for a range of flow rates, mainly due to the lower shear conditions and the close cell and aggregate proximity therein. A counterintuitive decrease in the mean aggregate size was apparent in the lower flow rate branches. This was attributed to the existence of regions depleted by aggregates of certain sizes in the parent branch, and to the change in the exact flow split location in the T-junction with flow ratio. The findings of the present investigation may have significant implications for microvascular flows and may help explain why the effects of physiological RBC aggregation are not deleterious in terms of in vivo vascular resistance.


Subject(s)
Erythrocyte Aggregation/physiology , Erythrocytes/physiology , Microvessels/physiology , Humans , Vascular Resistance/physiology
9.
Biomicrofluidics ; 6(2): 24119, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23667411

ABSTRACT

Red blood cell (RBC) aggregation is a multifaceted phenomenon, and whether it is generally beneficial or deleterious remains unclear. In order to better understand its effect on microvascular blood flow, the phenomenon must be studied in complex geometries, as it is strongly dependent on time, flow, and geometry. The cell-depleted layer (CDL) which forms at the walls of microvessels has been observed to be enhanced by aggregation; however, details of the characteristics of the CDL in complex regions, such as bifurcations, require further investigation. In the present study, a microchannel with a T-junction was used to analyze the influence of aggregation on the flow field and the CDL. Micro-PIV using RBCs as tracers provided high resolution cell velocity data. CDL characteristics were measured from the same data using a newly developed technique based on motion detection. Skewed and sharpened velocity profiles in the daughter branches were observed, contrary to the behavior of a continuous Newtonian fluid. RBC aggregation was observed to increase the skewness, but decrease the sharpening, of the velocity profiles in the daughter branches. The CDL width was found to be significantly greater, with a wider distribution, in the presence of aggregation and the mean width increased proportionally with the reciprocal of the fraction of flow entering the daughter branch. Aggregation also significantly increased the roughness of the interface between the CDL and the RBC core. The present results provide further insight into how RBC aggregation may affect the flow in complex geometries, which is of importance in both understanding its functions invivo, and utilizing it as a tool in microfluidic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...