Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 11(12)2021 12 20.
Article in English | MEDLINE | ID: mdl-34944558

ABSTRACT

The main aim of our work was to create a full-length bispecific antibody (BsAb) as a vehicle for the targeted delivery of interferon-beta (IFN-ß) to ErbB2+ tumor cells in the form of non-covalent complex of BsAb and IFN-ß. Such a construct is a CrossMab-type BsAb, consisting of an ErbB2-recognizing trastuzumab moiety, a part of chimeric antibody to IFN-ß, and human IgG1 Fc domain carrying knob-into-hole amino acid substitutions necessary for the proper assembly of bispecific molecules. The IFN-ß- recognizing arm of BsAb not only forms a complex with the cytokine but neutralizes its activity, thus providing a mechanism to avoid the side effects of the systemic action of IFN-ß by blocking IFN-ß Interaction with cell receptors in the process of cytokine delivery to tumor sites. Enzyme sandwich immunoassay confirmed the ability of BsAb to bind to human IFN-ß comparable to that of the parental chimeric mAb. The BsAb binds to the recombinant ErbB2 receptor, as well as to lysates of ErbB2+ tumor cell lines. The inhibition of the antiproliferative effect of IFN-ß by BsAb (IC50 = 49,3 µg/mL) was demonstrated on the HT29 cell line. It can be proposed that the BsAb obtained can serve as a component of the immunocytokine complex for the delivery of IFN-ß to ErbB2-associated tumor cells.


Subject(s)
Antibodies, Bispecific/pharmacology , Immunoglobulin Fc Fragments/chemistry , Interferon-beta/metabolism , Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Trastuzumab/chemistry , Antibodies, Bispecific/chemistry , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Neoplasms/drug therapy
2.
PLoS One ; 6(6): e20991, 2011.
Article in English | MEDLINE | ID: mdl-21677771

ABSTRACT

B cells play an important role in the pathogenesis of both systemic and organ-specific autoimmune diseases. Autoreactive B cells not only produce autoantibodies, but also are capable to efficiently present specific autoantigens to T cells. Furthermore, B cells can secrete proinflammatory cytokines and amplify the vicious process of self-destruction. B cell-directed therapy is a potentially important approach for treatment of various autoimmune diseases. The depletion of B cells by anti-CD20/19 monoclonal antibody Retuximab® used in autoimmune diseases therapy leads to systemic side effects and should be significantly improved. In this study we designed a repertoire of genetically engineered B cell killers that specifically affected one kind of cells carrying a respective B cell receptor. We constructed immunotoxins (ITs), fused with c-myc epitope as a model targeting sequence, based on barnase, Pseudomonas toxin, Shiga-like toxin E.coli and Fc domain of human antibody IgGγ1. C-MYC hybridoma cell line producing anti-c-myc IgG was chosen as a model for targeted cell depletion. C-myc sequence fused with toxins provided addressed delivery of the toxic agent to the target cells. We demonstrated functional activity of designed ITs in vitro and showed recognition of the fusion molecules by antibodies produced by targeted hybridoma. To study specificity of the proposed B cells killing molecules, we tested a set of created ITs ex vivo, using C-MYC and irrelevant hybridoma cell lines. Pseudomonas-containing IT showed one of the highest cytotoxic effects on the model cells, however, possessed promiscuous specificity. Shiga-like toxin construct demonstrated mild both cytotoxicity and specificity. Barnase and Fc-containing ITs revealed excellent balance between their legibility and toxic properties. Moreover, barnase and Fc molecules fused with c-myc epitope were able to selectively deplete c-myc-specific B cells and decrease production of anti-c-myc antibodies in culture of native splenocytes, suggesting their highest therapeutic potential as targeted B cell killing agents.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Autoimmune Diseases/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Cell Death/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Autoantigens/immunology , Autoimmune Diseases/drug therapy , Bacterial Proteins , CHO Cells , Cell Line , Cricetinae , Cricetulus , Epitopes/immunology , Humans , Hybridomas/immunology , Mice , Mice, Inbred BALB C , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Ribonucleases/genetics , Ribonucleases/immunology , Spleen/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...