Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biomedicines ; 11(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38137520

ABSTRACT

Cancer is one of the leading causes of death globally. Epidermal growth factor receptor is one of the proteins involved in cancer cell proliferation, differentiation, and invasion. Antisense oligonucleotides are chemical nucleic acids that bind to target messenger ribonucleic acid and modulate its expression. Herein, we demonstrate the efficacy of splice-modulating antisense oligonucleotides to target specific exons in the extracellular (exon 3) and intracellular (exon 18, 21) domains of epidermal growth factor receptor. These antisense oligonucleotides were synthesized as 25mer 2'-O methyl phosphorothioate-modified ribonucleic acids that bind to complementary specific regions in respective exons. We found that PNAT524, PNAT525, PNAT576, and PNAT578 effectively skipped exon 3, exon 18, and exon 21 in glioblastoma, liver cancer, and breast cancer cell lines. PNAT578 treatment also skipped partial exon 19, complete exon 20, and partial exon 21 in addition to complete exon 21 skipping. We also found that a cocktail of PNAT576 and PNAT578 antisense oligonucleotides performed better than their individual counterparts. The migration potential of glioblastoma cancer cells was reduced to a greater extent after treatment with these antisense oligonucleotides. We firmly believe that using these splice-modulating antisense oligonucleotides in combination with existing EGFR-targeted therapies could improve therapeutic outcomes.

2.
Cancers (Basel) ; 13(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771719

ABSTRACT

Splicing is an essential process wherein precursor messenger RNA (pre-mRNA) is reshaped into mature mRNA. In alternative splicing, exons of any pre-mRNA get rearranged to form mRNA variants and subsequently protein isoforms, which are distinct both by structure and function. On the other hand, aberrant splicing is the cause of many disorders, including cancer. In the past few decades, developments in the understanding of the underlying biological basis for cancer progression and therapeutic resistance have identified many oncogenes as well as carcinogenic splice variants of essential genes. These transcripts are involved in various cellular processes, such as apoptosis, cell signaling and proliferation. Strategies to inhibit these carcinogenic isoforms at the mRNA level are promising. Antisense oligonucleotides (AOs) have been developed to inhibit the production of alternatively spliced carcinogenic isoforms through splice modulation or mRNA degradation. AOs can also be used to induce splice switching, where the expression of an oncogenic protein can be inhibited by the induction of a premature stop codon. In general, AOs are modified chemically to increase their stability and binding affinity. One of the major concerns with AOs is efficient delivery. Strategies for the delivery of AOs are constantly being evolved to facilitate the entry of AOs into cells. In this review, the different chemical modifications employed and delivery strategies applied are discussed. In addition to that various AOs in clinical trials and their efficacy are discussed herein with a focus on six distinct studies that use AO-mediated exon skipping as a therapeutic strategy to combat cancer.

3.
Cancers (Basel) ; 12(9)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906592

ABSTRACT

Brain cancer is one among the rare cancers with high mortality rate that affects both children and adults. The most aggressive form of primary brain tumor is glioblastoma. Secondary brain tumors most commonly metastasize from primary cancers of lung, breast, or melanoma. The five-year survival of primary and secondary brain tumors is 34% and 2.4%, respectively. Owing to poor prognosis, tumor heterogeneity, increased tumor relapse, and resistance to therapies, brain cancers have high mortality and poor survival rates compared to other cancers. Early diagnosis, effective targeted treatments, and improved prognosis have the potential to increase the survival rate of patients with primary and secondary brain malignancies. MicroRNAs (miRNAs) are short noncoding RNAs of approximately 18-22 nucleotides that play a significant role in the regulation of multiple genes. With growing interest in the development of miRNA-based therapeutics, it is crucial to understand the differential role of these miRNAs in the given cancer scenario. This review focuses on the differential expression of ten miRNAs (miR-145, miR-31, miR-451, miR-19a, miR-143, miR-125b, miR-328, miR-210, miR-146a, and miR-126) in glioblastoma and brain metastasis. These miRNAs are highly dysregulated in both primary and metastatic brain tumors, which necessitates a better understanding of their role in these cancers. In the context of the tumor microenvironment and the expression of different genes, these miRNAs possess both oncogenic and/or tumor-suppressive roles within the same cancer.

4.
RSC Adv ; 8(55): 31510-31514, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-35548247

ABSTRACT

We describe a novel synthetic strategy for conjugating HMGA2 siRNA and the HMGA aptamer to the nucleolin aptamer and nucleolin antibody, respectively. Our studies demonstrate that these conjugates inhibit cell proliferation in retinoblastoma cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...